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ABSTRACT

The determination of 3-D motion parameters of an object from its image-
sequences is discussed for three types of motion analysis : (1) monocular vision,
(2) stereo vision, and (3) stereo motion. These parameters of the object enable
one to obtain its attitude, attitude rate, visible surface shape,
identification/recognition, and track. Under suitable conditions, these parameters
can be estimated from the 2-D image co-ordinates of a set of points on the object's
surface in consecutive images, using the Image Point Correspondence ( |PC )
algorithm. In this research, a Generalized Image Point Correspondence ( GIPC )
algorithm has been developed to enable the computation of motion parameters for a
general configuration where both the object and the camera are moving. A detailed
error analysis of these algorithms has been carried out. Furthermore, this algorithm

was tested on both simulated and video-acquired data, and its accuracy determined.
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CHAPTERI
INTRODUCTION

- The research in motion analysis has evolved over the years as a challenging field
in the area of computer vision. Its major contribution is in application to dynamic image-
sequence analysis. The information contained in the image-sequences of a moving
object aids in the computation of the motion parameters, as well as, the segmentation

and shape analysis.
1.1. BACKGROUND

In this section we provide the motivation for this research and present develop-

ments pertinent to it.
1.1.1. Applications of Motion Analysis

The potential applications of image-sequence analysis, as indicated by Shariat

([1]), are listed below.

(1) Robotics/Automation : A camera mounted on the end-effector of a manipulafor
(robot arm ) takes images of a moving object or target. The range and the orientation of

i i tmmbnd & Loommias
the cohject relative to the end-effecter are sstimated from a kn

ments of the images of its features. This information, in turn, is used as a feedback to
control the manipulator. Robotics and automation find applications in industry and
space. For space applications, a robot's task can be, for example, to retrieve a defective
satellite. After knowing the position, orientation, and the velocities in all six degrees of
freedom of the satellite, the motion of the manipulator under computer control is
matched to that of the satellite. It is done so that when the robot grasps the sateliite, no
excessive forces and torques are produced, which might otherwise damage the satellite
or the manipulator. A future use of the robot is in its application to an autonomous vehi-

cle. Such robot-controlled vehicle could be extensively used for space exploration,



using vision for its navigation. One of the functions of the vision system is to prevent col-
lision with obstacles, such as rocks, while moving on and taking pictures of different

types of terrains in planetary exploration.

(2) Medicine and Biological Sciences : The image-sequences are used to under-
stand the normal functions of an organ as well as its abnormalities. They are also used

in the fields of biophysics, biology, and biomedicine to study movement and behavior of

fish and micro-organisms.

(3) Military Applications : The camera is used to identify and track moving tar-
gets in its field of view. From a set of images of the target, its range and orientation can
be computed. This process of recognition of the target is essential for some military

applications.

(4) Meteorological Applications : Cloud displacements are measured from a
sequence of satellite-acquired images. From these, the direction of cloud motion and

wind velocity are estimated for weather forecasting.

(5) Traffic Monitoring : The detection, tracking, and identification of moving vehi-

cles, such as cars, are done from a sequence of images.

(6) Segmentation and Scene Analysis : The motion analysis provides useful infor-

mation regarding the segmentation and the scene analysis in an environment where

multiple objects are moving.
1.1.2. Current Research Thrusts in Motion Analysis

The current research in motion analysis for perception is concentrated in the follow-

ing areas, as indicated in Fig.1 :

(i) Feature extraction and matching of consecutive images.
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(ii) Efficient algorithms for motion parameter detection.
(iii) Hardware Impiementations.

(iv) Applications developments.

Brief comments on the above four thrusts follow.

Techniques are being developed that enable extraction of features and matching
these over consecutive frames. Features can also be estimated from images for
identification purposes. Furthermore, several images can be matched using a set of
features corresponding to a particular object or scene. Another approach to the
identification of the object/target is the correlation of the acquired scenes with those
stored in the computer. Feature extraction and image matching provide the needed
inputs to the algorithms for motion parameter estimation. These algorithms perform
unique operations on image sequences. Considerable effort is presently being
expended in the area of parameter estimation for applications with relative motion
between the camera and the object/scene. Applications of motion parameter estimation
in various fields of engineering and science continue to be explored at an accelerated
pace. The thrust of automation and robotics to industrial, space, and defense opera-
tions has created a need for the motion parameter estimation algorithms. The research
efforts in the areas of algorithm development and applications determine requirements
for hardware development. Hardware subsystems comprise of cameras, videos, point-
ing, tracking, and on-board data processing. The technology innovations for space
applications include reduction of size and weight, increase in speed and reliability, and
automatic operaticn {[2]). For the medical and ground-based systems, technology is

being developed for data processing/recording, and display subsystems.

in the past two decades, a number of approaches have evolved for the develop-

ment of efficient algorithms for motion perception from a sequence of images. Some use



two frames of the images of the moving object ( [3,4,5,6,7] ), while others use more than
two ( [1,8] ), to determine the motion parameters of the second image of the object rela-

tive to the first image. These approaches are discussed in the following subsection.
1.1.3. Approaches to the Solution for the Motion Analysis Problem

In order to develop efficient algorithms, one can use either of the two broadly

classified approaches :

1.1.3.1. Intensity-Based Approach : Here, image processing techniques like sub-
traction, correlation, convolution, Fourier analysis, or differentiation, are applied to the

image of the object to estimate its motion parameters.
The algorithms that fall in this category are explained below :

(1) Reflectance Map Method :

The dependence of surface reflection on the geometry of incident and reflected
rays is given by the bidirectional reflectance distribution function ([9]). The reflectance
map, that gives a relationship between the surface orientation and brightness, can be
derived from this function and the distribution of the light sources. The photometric
stereg method for rocovering tha aoriontatian of surface natchas from a2 number of
images taken under different lighting conditions has been developed. If a single image is
available, the shape can also be recovered from the spatial variation of brightness called
shading, since parts of the surface are oriented differently and thus appear with dif-

ferent brightnesses.

(2) Optical Flow Approach :

Optical flow is a velocity field that defines motion in an image. A velocity vector is
assigned to each point in the image. Brightness patterns in the image move as the
object moves. It is the apparent motion of these brightness patterns that gives the opti-

cal flow. Movement through the environment maps information onto a pattern. From



this pattern through inverse mapping, it is possible to derive information about the
environment and the observer's motion ([9,10,11,12,13]). This approach requires itera-

tive searches. The orthographic (parallel) projection is also assumed.

1.1.3.2. Feature-Based Approach : In this approach, prominent features are
found and then matched over consecutive time-varying frames. The features can be
points, line segments, edge fragments, or moment invariants. The correspondence or

the matching problem over a set of frames is assumed to be known a priori.
The algorithms that fall in this category are explained below :

(1) Moment Invariant/Attributed Graph Approach : The 3-D objects are recog-
nized, and the motion parameters determined from their 2-D orthographic projections.
The geometric transforms are used instead of the iterative matching techniques
([14,15,16,17,18]). For the identification purposes, a 3-D object is represented by an
attributed graph where a node represents a face of the object. Associated with each
node is a feature vector containing moment invariants of the face. A link between two
nodes means that the two faces are adjoining. Associated with each edge is a scalar
which is the angle between two nodes. Any 2-D projection of the object can be similarly
represented by a graph, which is a subgraph of the above graph. It is so because only a
part of the object is facing the camera. Thus the identification problem becomes a sub-
graph isomorphism between the observed image and the 3-D object. The moment
invariants are found to be invariant under 3-D motion. The attitude parameters of the
observed object relative to the 3-D object are determined from the knowledge of 2-D
moments of its faces. The orthographic projection is assumed in this analysis. it also

considers the object with flat surfaces.

(2) Straight Line Correspondence Algorithm : The 3-D motion/structure of a rigid

body, containing straight line segments as features, can be determined if a sequence of



three 2-D perspective views is given ([19,20]). The projections of 3D lines over the three
consecutive image frames are assumed to be known. A seven line correspondence (LC)
involves an iterative search without any constraints on the 3-D line. If the 3-D lines lie
on paraliel planes, and the orientation of the rotation axis is fixed over the three image
frames, an eight LC results in a linear method. The surface of a unit sphere is used in
place of the plane of the perspective projection. In this analysis, the projections of mov-
ing 3-D lines on this sphere over three frames are studied. A fairly good initial guess is

required for the convergence in the iterative search.
(3) Image Point Correspondence Algorithm :

Three different cases of motion analysis have been identified ( [45,6,7] ). They are
: (i) Two-view motion analysis ( monocular vision ), (ii) stereo vision, and (iii) stereo
motion. A discussion of these cases appears in the following section where the

approach used in the present research is described.
1.2. DESCRIPTION OF RESEARCH IN THE PRESENT WORK

1.2.1. Statement of the Research Problem

In this work, three cases of motion analysis based on vision, namely, monocular
vision, stereo vision, and stereo motion, have been investigated, and, in this context, the
work done by different authors ([4,5,6,7]) in developing the Image Point Correspon-
dence ( IPC ) algorithm in three different ways has been studied. However, the IPC
algorithm does not apply to a more general problem of motion analysis. The generalized
version of motion analysis involves a situation where both the object and the camera are
moving. Industrial and space robots face this situation in locating and tracking of vari-
ous objects/scenes. The space robot, for example, takes pictures of a satellite for motion
deo sysieim and the object move asynchronousiy. An aigo-

rithm for motion parameter estimation is required for this general case of relative motion.



An extension of the IPC algorithm is, therefore, needed to address this requirement.

As mentioned previously, three different types of motion analysis have been

identified. They are discussed in the following :

i) Two-view motion amlysis or monocular vision case : The pictures of a mov-
ing target are taken by a stationary camera at different instants of time. The motion
parameters of the target are found from the knowledge of the correspondence of pro-
jected images of the 3-D points on it, using the IPC algorithm. The surface of the target

is also determined.

(ii) Stereo vision or binocular vision case : The pictures of a stationary target are
taken by two cameras stationed at different locations in this case. The motion parame-
ters that relate the two camera cb-ordinate systems are found by using the IPC algo-
rithm. The surface of the target can also be determined from a minimum of eight data

points available.

(iii) Stereo motion case : This case is similar to the second case. However,
instead of two stationary cameras, one moving camera is used to take the pictures of

the stationary target from two different locations at different instants of time.

An extension to the IPC algorithm, termed as Generalized Image Point
Correspondence ( GIPC ) algorithm, has been used for the general problem of motion
analysis in this research. In the generalized version of the motion analysis, both the
object/scene and the camera are moving. The other three cases of motion analysis have

been determined to be its special cases.

in aii the cases mentioned, the image plane is assumed to be at the focal point of
the camera with its X- and Y-axes parallel to those of the camera co-ordinate system.
The center of the camera rotations coincides with the origin of the camera co-ordinate

system, and its z-axis is the line of sight.



1.2.2. Assumptions

The assumptions used in the development and testing of the algorithm are as fol-

lows :

(a) The object undergoes a rigid-body motion which, in other words, means that

the object does not change its shape while in motion.

(b) The motion of the object is constant in any two consecutive frames. In other
words, it means that there are no discontinuities in the motion parameters, and the axis

of rotation remains fixed.
(c) For using the GIPC algorithm, the direction of motion of the object is known.

(d) For the GIPC algorithm, the motion parameters of the camera are known so as

to compute those of the object.

(e) There are certain restrictions on the spatial distribution of the data points on the

surface of the object in order to run the IPC algorithm, and are explained in Appendix B.

1.2.3. Outline of the Present Work

in chapter Il, the relationship between the co-ordinate frame transformation and the
rigid-body motion of an object is determined. The three cases of motion analysis are

shown to be equivalent for the determination of motion parameters.

in chapter lii, the three methods for the IPC algorithms, adopted by different

authors, are presented as different manifestations of the same approach.

In chapter IV, the GIPC algorithm is developed. Furthermore, the IPC algorithm
applied to the three cases of motion analysis is shown to be a special case of the GIPC

algorithm applied to the most general motion equation.

In chapter V, error analysis for the three methods of the IPC algorithm has been

carried out.
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Chapter VI discusses some experimental results, where simulated and real data

have been used.

In Appendices A through F, proofs and definitions used in this research, are

presented. Appendix G presents implementations of the IPC and the GIPC algorithms

in terms of computer programs.
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CHAPTER Il
FRAME TRANSFORMATIONS AND RIGID-BODY MOTION

In this chapter, the relationship between co-ordinate frame transformations and
rigid-body motion of an object ([6]) is established. Rigid-body motion is represented as
a rotation, followed by a translation. The rotation is expressed in terms of a matrix R.
Two different representations of the rotation matrix are widely used. The rotation matrix
is an orthonormal matrix of the first kind. Other properties, along with the two represen-
tations of the matrix R just mentioned are discussed in Appendix A. The translation is

expressed as a vector T with its components representing translations along the three

axes.

In what follows, we shall show the three special cases of motion analysis; namely,
the monocular vision, stereoscopic vision, and stereo motion, are equivalent. A

detailed description of these is also given.

2.1. RELATIONSHIP BETWEEN CO-ORDINATE FRAME TRANSFORMATION
AND RIGID-BODY MOTION

In this section, the various developments have been taken from Zhuang et al. ([6]).

Let there be two right-hand co-ordinate frames in the 3-D Euclidean space E; (Fig.2) :
F={o;®] and FF=[0' ;0 ];

where o and o’ are the origins, and ® and @’ are the matrices containing the orthonor-
mal basis (1, ¢2,¢3)and (¢, ¢2’, ¢3 ) of the frames F and F’ respectively. These
basis vectors define the relative orientations of the frames with respect to a base or a
standard frame S. Thus the transformation of the frame F’ to the frame F can be
expressed in terms of a fotation matrix R followed by a translation T from the origin o’ to
the origin . in other words, the set @ of the basis vectors of F can be expressed in

terms of the set @’ of F’ by the equation



OBJECT

—
(R,T)

Fig2. Geometru illustrating the relationship between Frame Transformahon

und ntym uuug 4 IUUUII

12



13

o=9'R (2.1a)
and

0=0"+T. (2.1b)

Any point P (Fig.2) in E3 can be represented in both the frames F and F’ respec-

tively as follows

P=x¢,+y ¢2+2 ¢3+0 =0@r+o (2.2a)

=X"01'+Y ¢2'+2 ¢3'+0" =0®'r'+0’; (2.2b)

where r = (x,y,z ), r =(x,y,2’ )t are the co-ordinates of P with respect to the
frames F and F’ respectively, and the superscript ‘t’ indicates the transposition opera-

tion.
Substituting eqn.(2.1a) and eqn.(2.1b) in eqn.(2.2), we get

or=0'Rr+T. (2.3)

if the frame F’ coincides with the frame S in E5 , then,

A —r0n 0t a1 r A =100\t A 2—rn0 1 A\t anAd AZ_rn A 1t
- TN MIVy vy = = v Y NSV vy s YL TV MYy W Y I TAVYV A,
and eqn.(2.3) can be simplified as

r=Rr+ T. (2.4)

This represents the most basic form of the motion analysis equation. From
eqn.(2.4), we deduce that when the standard frame F’ in E3 transforms into the right-
hand frame F by the rotation R and the translation T, the point r experiences a rigid-
body motion defined by ( R, T ) and becomes the point  where r and ¥ are the co-

ordinates of the same spatial point P in E; relative to the frames F and F’ respectively.
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Conversely, if we consider a point P(r) undergoing a rigid-body motion to another

point P’ (') in Fig.3, then

P=Rr+T. (2.5)

Let a new frame F’ be defined as follows :
o' =0 R! (2.6a)
and

o=0-T (2.6b)

and consider F’ as the standard frame. In that case, x¢; + y¢2 + 203 + © and x'¢;" +
Yo + 203" + 0’ represent the same point in E3 and hence r and ' become co-ordinate
representations of that point with respect to F and F’ respectively. In other words, the
motion of the point P(r) to the point P’ (' ) with a fixed frame F’ is similar to the motion of

the frame F’ to the frame F with respect to a fixed point P.

22. THE THREE CASES OF THE MOTION ANALYSIS AND THEIR
EQUIVALENCE

We are now in a position to describe the three special classes of motion analvsis,
find their equivalence ([6]), and discuss the orientation of the camera with a frame. The

reader is referred to Tsai ([21]) for the relationships shown in the following sub-sections.

The three cases are :
2.2.1. The Two-View Motion Analysis/Monocular Vision Case

One stationary camera is used to take images of a moving object at different
instants of time ( Fig.3 ). The camera’s lens coincides with the origin o of the frame F, its
line of sight directs along z < 0, and its image plane is at z = f, where f ( assumed known

and normalized to 1 ) is the focal iengih.
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OBJECT UNDERGOING RIGID BODY MOTION
b (R, T)

[/ N\ X

Ny 4Ky IMAGE PLANE
(X i lYu)é( Y d) \
UW
X

2 STANDARD FRAME S

Fig3:Camera Geometry illustrating Perspective Projection and Redial Lens
Distortion in Two-Yiew Motion Analysis Case.
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The algorithm can be explained by considering any point P at any instant t, on the
surface of an object. The point P moves to another point P’ at instant t; (t, > t;) as a
result of the motion of the object. The geometry of the problem is shown in Fig.3 where
S is a standard or reference co-ordinate system in the Euclidean space E; with which

the camera co-ordinate system coincides. Let
r=(x,y,z )" be the object-space co-ordinates of P relative to the frame S;
=(x,y,2' )! the object-space co-ordinates of P’ relative to the frame S.
If the object moves with motion parameters ( R, T ), where R and T are the rotation

matrix and translation vector respectively and given by

P rir2r3
R=|py2|=(rd4r5ré6 (2.7a)
Ps3 r7r8r9

T= ] (2.7b)
3)

1,2.3) being the a'th row of R: r1.r2 _ rQ tha rotatian paramsters and &, & and

T

t; the translations along x-, y- and z-axes respectively; we have

=Rr+T. (2.8)

Let ([21])
(X,Y) : the ideal image-space co-ordinates of P if a perfect pin-hole camera is used:

(Xia,Yis) : the actual image-space co-ordinates of P which differ from the ideal co-

ordinates due to the lens distortion, and

{Xc,Yc) : the co-ordinates of P used in the computer which are the number of pixels

for the discrete image in the frame memory.
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Likewise, let

(X".Y’) : the ideal image-space co-ordinates of P’;

( Xia’,Yw" ) : the actual image-space co-ordinates of P’, and
(X", Yc’) : the co-ordinates of P’ used in the computer.

The following steps, shown by Tsai ([21]), give the transformations which

arise due to the rigid-body motion of the object:
Step I. Rigid-body motion from P to P’ is given by eqn.(2.8).

Step ll. Transformations from 3-D object-space co-ordinates of P and P’ to the

ideal 2-D image-space co-ordinates, using perspective projections, are respectively

X=fxlz; Y=fy/lz; (2.9a)

X=fxPZ;,Y=tyr; (2.9b)
where ‘f’ is the focal length of the camera lens used.

Step Hll. Transformations due to the lens distortions are given by two kinds of lens
distortions : radial and tangential, the former one being more common. Ignoring the

iangeniiai component of the iens distortion, we get (j21])

Xi=06X; Ya=0VY; (2.10a)

Xg'=0'X ; Ya'=0'Y"; (2.10b)
where

o=(1+a82+BE)!; o’=(1+ak2+PE4yi; (2.11a)

E2=Xis 2+Yig 2 and £7=Xq’'2+ Y’ 2; (2.11b)

o and f being the distortion coefficients.
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Step IV. This step of transformation results from using TV cameras, particularly
solid state CCD, as a visual aid for robots. The transformations from actual image co-

ordinates to the computer image co-ordinates are given by

Xe =YX +Cy; Yo =8Yq+Cy ; (2.12a)
Xe'=yXig’+Cx and Y. '=8Y' +Cy ; (2.12b)
where
Y=(Sx Il ) (Kix / %ex ) ; (2.12¢)
5=11, ; (2.12d)

Iy : center to center distance between adjacent sensor elements along X axis;
ly : center to center distance between adjacent sensor elements along Y axis;

Sx : uncertainty image scale factor due to slight hardware timing mismatch between

image acquisition and camera scanning hardware or the timing of TV scanning not being

precise;
Cx.,Cy : image origin;
Kyx : number of pixels in a line as sampled by the comleter and'
Kex : number of sensor elements along X axis.

The parameters f, a, B, v, §, 0, &, Cy ,Cy are called the intrinsic parameters of the

camera which can be found out by the camera calibration techniques ([21,22,23] ).

Combining all the steps shown above, we get the iollowing relationship between

the actual computer co-ordinates of P and P’ :

[ (r1X; +r2Y.+r3)z +t,) ]_
l_(r7xc+r8Y¢+r9)z+tz) J' (2.13a)

v s __ s
NnNe =1
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; (2.13b)

Y. = f (raXc +r5Yc +r6)z +t,)
¢~ (r7TXc+r8Yc +r9)z +1; )

For a vidicon-type camera where Kfx = K , @nd Cx = 0 = C, with no lens distortion

(ie, a=0=B) andlx =1l = s, =1, the transformation equation (2.13) reduces to the

form ([5])

' = (rix+ray+r3zt) |_ (F1X+r2Y +r3)z +t)
X =1 { (Fr7X+r8y +r9z +t; ) l—f [ (TTX+18Y +19)z +5; ) [>148)

and

= (fdx+rSy+rézty) |_ (F4X +r5Y +16)z +t, )
Y=t [ (r7x+r8y +r9z +t; ) ]‘f [ (rTX+r8Y +r9z +t; ) 2.14b)

2.2.2. The Stereo Vision/Binocular Vision Case

Two stationary cameras are used to take pictures of a stationary object (Fig.2). The
lens of one camera coincides with the origin o of the frame F and the line of sight is
directed along z < 0. Another camera’s lens coincides with the origin o’ of the frame F’
and the line of sight directs along 2’ <0. The z=fand z’ = f’ (where f and f’ are

assumed to be 1 without any loss of generality) are two image planes in F and F’

respectively.

One of the important applications of stereoscopic vision is in photogrammetry
where the shape of an object is determined from overlapping its pictures or 2D images
which are taken by properly calibrated cameras stationed at two places. The transforma-
tion between the two camera coordinate frames based on a knowledge of 2D image
coordinates of the points on the surface of the obiject is called the relative orientation.

If the 3D coordinates of the points are known, it is called absolute orientation.

»!

A simple example for sterso vision { [S] ) is shown in Fig.4 where the iwo cameras

are placed such that their optical axes are parallel and separated by a distance ‘d'. The
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camera coordinate frames align with F and F’. The line which connects their centers is
called the baseline. Let the image coordinates of any point P(x, y, z) on the surface of

an object relative to the two frames be (X;,Y;) and (X, ,Y ;) respectively. It is seen that
Xi/fy= X242 x,/¢,= X=02 ang v,/f,=Y,/1,=y/2; (2.15)

where ‘f ;' and ‘f 5’ are the focal lengths of the two camera lenses. Assuming the same
focal length ‘' for the two cameras, the eqn.(2.15) could be solved for x, y, z, which in

turn, determine the shape of the surface of the object. Thus

d(X;+X d(Y;+Y
x=_(_2_1_E_L)_;y=_L2%_2_)and z=df/p; (2.16)
where
p=X;-Xs

and is called the disparity. Distance is inversely proportional to disparity. The distance
to near objects can thus be measured accurately. This is not true for far objects. This

arrangement of determining the surface shape encounters other problems and are dis-

cussed in [9].

Iin a practical situation, the two cameras are seidom parallel to each other and are
oriented relative to each other as shown in Fig.2. The transformation between the two
camera frames F and F’ can always be regarded as a rigid body motion and thus can be
decomposed into a rotation and a translation. If ¥ = (x’,y ,2" ) is the 3D object
space coordinates of P relative to frame F’ and r = ( x, y, z )! the 3D object space coor-
dinates of P relative to the frame F, then eq.(2.8) holds true. The steps that give the
transformations which arise due to the rigid-body motion of the camera are similar to the
ones discussed in the monocular vision case earlier. Fig.4 is a special case of Fig.2,

where
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-d
R=1 and T=]| 0
0

The identity matrix | indicates that there is no rotation around any axis.

2.2.3. The Stereo Motion Case

This case is similar to the second case in the sense that instead of using two sta-
tionary cameras, a moving camera is used. This camera takes pictures of a stationary
object from different locations. One location is identified with the frame F and the other

with the frame F’. Thus, as before, the motion analysis equation is represented by

eqn.(2.8).
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CHAPTERIII
THE IMAGE POINT CORRESPONDENCE ALGORITHM

The motion parameters of an object from its image-sequer_lces are determined by
using the Image Point Correspondence ( IPC ) algorithm. The input to the algorithm is a
set of 2-D image co-ordinates of data points in the consecutive images with known

correspondence.

Several authors ([4,5,6,7]) have developed special methods for the three classes of
motion analysis. In this chapter, we briefly survey these methods separately before the
concept of using an extended algorithm to a more general problem of motion analysis is
introduced in the next chapter. The detailed analyses and various proofs are presented

in Appendices B through F.

3.1. THE ALGORITHM

Solving eqns.(2.14a) and (2.14b), the following expressions for ‘z' are obtained

respectively,

X'/f(r7XIf+r8Ylf+r9)-(rlXIf +r2Y /1 +r3) )
and

Y’/f(r7X/f+r8YIf+r9)—(r4X/f+r5Y/f+r6) )

Normalizing ‘f' to 1, we get from eqns.(3.1a) and (3.1b)

rtQr=0; (3.2a)
or

vViQv=0; (3.2b)

or



MQy=0; (3.2c)
where

V=[X,Y,11Y; V=[X,Y,1]t; (3.2d)

Q=|l|=(q4 95 q6| = z [tKr7-t,r1 Wr8—1r2 Lr9—-t,r3|; (3.20)

'3 q7 q8 qg tyrl—txr4 tyrz—txrs tyr3"'txr6

M=[XX", YX', X', XY, YY', Y ,X,Y.1] (3.2f)
and

Qv =(91,92,93,94,495,96,97,98,q9)! . (3.29)

In egn.(3.2e), I, (o = 1,2,3) is the o'th row of Q.

Eqn.(3.2c) has nine unknowns, as given in eqn.(3.2g), and are called essential
parameters. These play a vital role in the computation of motion parameters. However,
applying these equations to n ( n9 ) known locations of data points on the object sur-
face and their corresponding image points, called the conjugate or image point
correspondence pair, the unknown matrix Q can be computed. Since the egn.(3.2¢) is
homogeneous, the solution for each essential parameter will contain a scale factor A.
This also follows from eqn.(3.2a) where the equality is preserved if we multiply Q (or Q)
with a scalar. Note that the essential parameters are linear in t«. ty and t,. Thus, when
eqn.(3.2c) is solved, we get the scale factor A that cannot be determined. The scale fac-

tor A influences ‘2’ in eqn.(3.1) but not the rotation parameters ([4]).
Re-arranging eqn.(3.2¢c) results in
NQ =G ; (3.3a)

where
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G =col. [-1,~1,~1, --- ]!, (3.3b)
N = col."(N;, Ny N3 -+ ); (3.3¢c)
No=[Xa X, Yo Xds Xo, Xa Yo, Yo Yoo Yo, Xqo Yel; (3.3d)

Q' =1q1/99,92/q9,93/99,94/99,95/49,96/99,97/99,q8/q9] " ; (3.3e)

(Xa, Ya) being the 2-D image-space co-ordinates for the o'th (@ = 1,2,3,...,n; n 28)

data point.

Egn. (3.3a) can be solved uniquely for the essential parameters from the

knowledge of n ( n28 ) image point correspondence pairs. If eight data points are avail-
able,

Q' =N1G; (3.4a)

provided N is non-singular. If more than eight points are available, then the pseudo-

inverse solution
Q' =N+G=(N'N)INtG (3.4b)
provides the least mean squares error solution.

There are certain degenerate eight-point configurations ( [4,5] ) for which the algo-

rithm fails, because for these cases the matrix N becomes singular. A configuration is

degenerate if

(i) as many as four of the points lie in a straight line, or

(i) more than six points are coplanar, for example, the vertices of a regular hexagon, or
(il seven or more points are traversable by wo planes with one plane containing the
origin, such as eight points representing the vertices of a cube, or

(iv) seven or more points lie on the surface of a cone containing the origin.
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In general, the IPC algorithm works satisfactorily in almost all cases if the eight

data points lie on more than two planes. The proof is given in Appendix B.
. 3.1.1. The First Method

Here, we are presenting the details of the first method for the IPC algorithm,
where Huang et al. ( [5,24,25,26] ) have used the algorithm for the two-view motion

analysis case.

We consider the estimation of motion parameters given Q ([5]). Let the singular

value decomposition of Q ( or Q ) be given by
Q=UAV!; (3.5)

where U and V are orthogonal matrices and A is a diagonal matrix containing the singu-

lar values of Q. Then, given Q, there are two solutions for the rotation matrix, R and R’,

given by
0-10
R=U |10 0V (3.6a)
00 o
and
010
R=U{-100|Vt. (3.6b)
0 0@

In eqns.(3.6a) and (3.6b), = det(U)/det(V). A solution for the translational vector T (up

to a scale factor) is given by

=l 12+ 0212 + 1312 )12
T=2 1 (llill2= 20>+ lis)2 2 | (3.6¢)
M2 = 22 - s 2

where 1 is a non-recoverable scale factor and ||.||? indicates the norm operation. The

proofs for eqns.(3.6a), (3.6b), and (3.6c) are given in Appendix C.
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3.1.2. The Second Method
As shown by Zhuang et al. ([6,7] ) :
Txr=TxRr; (3.7a)
or
Z2ZTxV =TxRV; (3.7b)

where ‘X’ denotes the cross-product. We obtain the basic motion equation from

eqns.(3.7a) and (3.7b) as

V.(TxRV)=0. (3.7¢)
For any 3x1 vector or matrix column x

Txy=Tyx; (3.8a)

where T is given by (3.6¢) and I' is a skew-symmetric matrix determined from

Q=TR (3.8b)
and
[ 0 tz -ty.l
r=|-t 0 t |. (3.8¢)
ty -t 0

If
R=[c;cr¢31];
where ¢4 (o = 1,2,3) is the o'th column of R, then
FR=T{cic3¢3]=[Te;Te; Tes J=[ Txe; Tx c2 Txecs]l (3.9)

=Tx[¢;2;¢8:]=TxHR.
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The algorithm for the computation of motion parameters is implemented in the fol-

lowing steps :
Step I : Compute
a=(-[ltll 2+[12]1 2 +]1s)1 2)/2;
b =(+[Lll 212} 2+|13] 2) /2
and
c = (+lhl 2+ {12l 2-15)1 2) /2.

Step 1 : If (Ja} 2|b],|c] ), define

alﬂ
T =|-(l1)/a”2{;
-(l,13)/al2

Pi=[ (l2xI3)x I +a2(lx 13) 1/(a?|T || 2);

PU=[ (l2xI3)x hi-a(l;x 13) 1/(-a2|T | 2);

P2=(l3+b¥p,)/al2=(p,;x 1,)/al?;
P2’=(l-b"py)/(~a)==(p/x1;)/a!;
P3=(-l2+¢c"p;)/a=(p;x13)/al2;

Pi'=(-la~c¥p/)/(~a)y=—(p/x13)/a
GO TO Step V.

Step lli : If (|b] 2|c|,]a] ), define

(3.10a)

(3.10b)

(3.10c)

(3.11)

(3.12a)

(3.12b)

(3.12¢)

(3.12d)

(3.12¢)

(3.12f)



29

(I3, 1,) /b2
T = b12 ; (3.13)
~(I213) /b2
P2=[ (Iax ;)X 12+4b¥2(13x 1;) }1/(b12||T" || 2); | (3.14a)
P2'=[ (l3ax I)x1;=-b"2(l3x ;) 1/(-b12||T" || 2); (3.14b)
Ps=(li+c¥py)/b2=(pyx 13)/b2; (3.14c)
Py’=(l1-c2py’)/(-b2)=—(px 13)/b}2; (3.14d)
pi=(-l3+a2p,)/b2=(p,yx 1,)/b12; (3.14¢)
Pr'=(-11-¢c2py)/(-b2)=—(pyx 1;)/bl2; (3.14f)
GO TO Step V.

Step IV : If (|c| 2|a|,|b]| ), define

—(I3,I,)/c”2

T =|-(s12)/c2|; (3.15)
cl/2

P3=[ (hixI)xI3+c2(lx 1) 1/(c?||T' || 2); (8.16a)

Py=[ (hixI2)xl3—c2(lyx 1,) }/(-c2|T || 2); (3.16b)

Pi1=(l2+a2p;3)/c2=(p3x 1;)/c!?; (3-16c)

Pi'=(12-a2p3" ) (-c2)==(pyx |;)/c!?; (3.16d)

P2=(~11+b"p3)/cl2=(p3x 1,)/c!?; (8.16e)

P2 =(=1;=b2p3)/(—cR)y==(pyx 13)/c!?; (3.16f)
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Step V: Let

R = col. (p1, P2 P3) (3.17a)
and

R’ = col. (p/,p2,p3) (3.17b)

The proofs for all the developments mentioned in this section have been given in
Appendix D.

3.1.3. The Third Method

Another method for IPC algorithm has been shown by H. C. Longuet-Higgins ([4]).

The algorithm can be implemented by rewriting egn.(3.2a) as

VIHV =0; (3.18)
where H = Q. Thus, the linear eqn.(3.18) is to be solved. We shall introduce the algo-

rithm step by step. For convenience, the length of the vector T is adopted as the unit of

distance, so that || T || 2= 1.

Step 1 : Compute the matrix Ht H where

1
l—txz "'tx ty -tx tz

Ht H =Q Qt - rrt=—r2= -ty tx l"'tyz _ty tz . (3.19)
—tz tx '-tz ty l-tzz

Step Il : Normalize the elements of H by dividing these by

(0.5x trace of H! H ) ¥2. Choose any arbitrary sign for H at this stage.

Step Ili : Define

he=T x ¢4 (3.20a)

Y}
=]
QQ
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We=hgx T (a=1,23); (3.20b)
where
hyis the o'throw of H ;
Cq is the o'th column of R and
W, is a new vector.
Then we can solve for the rows of Rt from
Ca=We+Wpx W,. (3.21)

The rotation matrix R is then determined from the transpose of the matrix Rt found from
eqn.(3.21). The other solution for the rotation matrix is found by changing the sign of H
or hy in eqn.(3.20a), or equivalently that of T, and then solving eqn.(3.21) as before.

The proof for eqn.(3.21) is given in Appendix E.

The three methods discussed in this chapter yield two solutions for the rotation
matrix, R and R’, and a unique solution for the translational vector T ( up to a scale fac-
tor ). The correct solution for the rotation matrix is found through a test discussed in
chapter IV. The flow diagram for the computation of T, R, and R’, is given in Fig.5. The
computation of the motion parameters from the translational vector and the rotation

matrix are given in chapter IV and Appendix A.
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CHAPTER IV
THE GENERALIZED IMAGE POINT CORRESPONDENCE ALGORITHM

In a practical situation, when the second image of the object is compared with its
first image or the database in the computer memory, the orientation and the location of
the camera are seldom the same. The actual situation a robot faces is an important
example. In an industry, a robot's job can be to track and pick up machine tools kept on
a moving conveyor belt. The space applications of robots include grasping a rotating
satellite for repairs, or assembling the Space Station. In many such applications, the
robot takes pictures of the changing scenes, at different instants of time, while it is mov-
ing. Thus the IPC algorithm, which is applied to the elementary forms of motion
analysis, needs an extension for the generalized motion analysis where both the scene
and the camera are moving. In this chapter, we consider this general problem. The
known correspondences of the images of a set of points on the object obtained by the
camera at different instants of time are utilized in this development. The method of solu-

tion is called the Generalized Image Point Correspondence ( GIPC ) algorithm.
Special cases of the above problem, discussed in the previous chapters, are :

(i) the determination of motion parameters of a moving object by a stationary cam-

era ( two-view motion analysis );

(i) the determination of position and orientation of a fixed object from pictures

obtained by two cameras ( stereoscopic vision );

(iif) the determination of position and orientation from pictures from a single moving

camera taken at different instants of time ( stereo motion ).
4.1. THE ALGORITHM

The general case of motion analysis is illustrated in Fig.6. For simplicity in presen-

tation, we consider in detail the equations that track a single point P on a moving
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object by a moving camera. F; and F; are the two frames with which the camera co-
ordinate system coincides at two different instants of time t; and t i (t > t) respectively.
The point P moves from the position P; to another position P j due to the rigid-body
motion of the object. We assume (R;,T;) and (R j»Tj) to be the transformation
parameters ( rotation and translation ) that link the frames F; and F j respectively with
the standard frame S. Also, let (Rj; , T;; ) be the transformation parameters that link the
frame F; with the frame F;. The object moves with the unknown motion parameters ( R

» T). The various transformation parameters for ‘n’ frames have been shown in Fig.7.

Next, as before, let
r=(x,y,z )! be the co-ordinates of P; relative to the standard frame S;
r=(x,y,2 )t bethe co-ordinates of P j relative to the standard frame S ;
ri = (X, Yi, 2i ) ! be the co-ordinates of P; with respect to the frame Fi;
Fij = (Xij, yij, 2j ) be the co-ordinates of P; with respect to the frame F;:
ri =(X;i,Yji, Zj )t be the co-ordinates of P; with respect to the frame F; and
Fij = (Xjj, ¥ij, zjj ) ! be the co-ordinates of P; with respect to the frame F i

T0 carry out a detaiied anaiysis of the problem, the relationship between the three
sets of frames, in terms of the co-ordinates of the point P, needs to be established. For

this purpose, the problem is split into two steps - one corresponding to the initial position

P; and the other to the final position P;.
Initial Position of the Object :
The transformation from the frame F, to the frame F;.asgiven by sqn.{2.3), is
Q=@ Ryjry+Ty ; (4.1)

where @; is the matrix of the basis vectors of the frame F;.
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The transformations from F; to S, and F; to S are special cases of transformation

shown in eqn.(4.1), and are expressed respectively as :
ri=R;r+T, (4.2a)
and
ri=R;r+Tj. | (4.2b)
Final Position of the Object :
The motion of the object relates r and r as follows :
r=Rr+T; (4.3)
As in eqn.(4.1), the transformation from F; to F j is expressed as
Qrij=0;Rjjrj;+ Ty ; (4.4)

The transformations from F; to S, and F; to S are special cases of eqn.(4.4) and

are expressed as :

ri=Rir+T;. (4.5a)

o
cL

rj=Rjr+T;. (4.5b)

This results in two sets of equations (4.1) and (4.3,4.4), corresponding to two posi-
tions of the object. From sither set of equations, we find the relationship between ( Ry,

Ty ). (R, Ty )and (R;, T;) as (Fig.6)
Ru =R; R] t (4.6a)
and

Tij=®; (Ti-R R]tTj), (4.6b)
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The pictures of the moving object are taken by a moving camera at discrete
instants of time. For this general motion probiem, we have two different cases. In the
first case, the initial picture of the moving object is taken by the camera at a location.
Then the camera is moved to another location so that the object is in the field of view
when the second picture is taken. In the second case, the camera can be moved first to
another location in order to take the second picture of the object. These two cases are
found to be identical in terms of the motion equation. Furthermore, the three types of
motion discussed in chapter lil will be shown as special cases of the general motion
problem.

4.1.1. The First Case

The motion of the object before the motion of the camera has been assumed in this
case. The relationship between the initial and final positions of the point P is expressed
by the following set of motion equations :

v

Lo

=RF+T
for the motion of the object from eqn.(4.3), and
Ory=q R +T5

for the motion of the camera from eqn.(4.4).

The desired relationship between r j and ry, the co-ordinates of the initial and the
final positions of the point P recorded by the camera, with respect to the frames F; and

Fi respectively, is given in the following equations (Appendix F) :

v = Rij' i +T§j' ;

-
H
N

&

where

B;j':RutB;BRit=qj RRt; (4.7b)
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Tjy’=-RjR RitTi+RIT+Tj. (4.7¢)

Eqn.(4.7a) gives the expression for the generalized version of the motion equation,
when the object moves before the camera moves. We shall derive (Appendix F) special

cases of motion analysis from the eqns.(4.7a,4.7b,4.7c).

Special Cases : If F; coincides with S, the motion equation can be written as

=Ry’ i +Ty" ; (4.8a)
where

Rjy’=R;'R=R;R (4.8b)
and

Ti’=R; T+T;. (4.8¢)

The IPC algorithm can be used to estimate the motion parameters (Rj,Tj) and

hence (R, T), of the moving object, assuming R;; and Ty; are known.

(i) Monocular vision case : Eqn.(4.8a) reduces to the case of the two-view
motion-equation when the location of the camera, taking the pictures of the moving
ODjEC, IS fixed. in that case,

Ri=R;=R; =1 and T;=T;=0 . (4.9)

Therefore, the generalized motion-equation reduces to

rp=Rr+T . (4.10a)
or, to the more familiar two-view motion equation

r=Rr+T7T (4.10b)

as the frames F,; and F coincide with the frame S, so thatr; =rand r y=r.
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(ii) Stereo vision case : For a stereo vision case, the object is assumed to be sta-

tionary. In that case,

R=I;R;=R; and T=0 (4.11)
and the generalized motion equation reduces to

rj=Rjri+Tj (4.12)
as should be the case.

In another special case of stereo vision, the object is moving and the cameras are
rigidly fixed to each other in a manner that their optical axes are parallel, as shown in

Fig.4. In this case the frame F; coincides with the standard frame S so that
Rj=R;=1I; Ty=Tj=rcol. (-d,0,0). (4.13)
4.1.2. The Second Case

In this case, the motion of the camera before that of the object has been assumed.

The relationship that exists between r ji and ry; is found to be (Appendix F) :

rij=Ry'ri+Ty"; (4.14a)
where

R;’=R; RR;! (4.14b)
and

Ty=-RRA'T +R; T+T. (4.14c)

As is clear from eqns.(4.8a, 4.8b, 4.8c) and {4.143,4.14b,4.14c), it does not matter

whether the object or the camera is moved first.
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4.2. THE DETERMINATION OF THE MOTION PARAMETERS

Some of the definitions used in the following sections are presented by H. C.

Longuet-Higgins ([4]) and Zhuang et al. ([5,6,7]). The motion parameters to be deter-

mined are
4.2.1. The Object Surface Shape

The shape of the object surface is found by a map of relative depths of 3D object

surface points by either of the two methods discussed in what follows :

Method I : From the generalized motion equation, for any two consecutive frames

F; and F;.,, one finds that ( [4] )

P1.(rn-T)_p;i.(Vi=-T/z),

Xiot =X 21 = G =T = B (V=TT ) (4.15)

where p, (o = 1,2,3 ) is the o’'th row of the rotation matrix Ri+1’. Thus, the ‘2’ coordi-

nates (or the depth) of the features, from their 2D image points, can be found from the

following equation :

_(P1=-Xap3).T =1z .

M P =X P3) VT (4.16a)
Therefore,
Xai=23 Xi=Ax and yi;=2z3; Yi=iy;. (4.16b)

The eqns.(4.16a,4.16b) give the object surface shape at instant t;, with respect to the
frame F;. The shape of the object surface is the set of 3D object-space coordinates of
the surface points relative to a frame. Thus, the shape of an object before motion can
be determined, but not its size, due to the non-measurable scale factor A involved. In
order to determine the shape of the object surface after the object has moved (i.e. with

respect to the frame ., one has to compute ‘x,; * and ‘y;,; * from
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Xai+1 = Zajis1 Xivr @Nd Yaier = 2Zaje1 Yier . (4.16¢)

Method II : The relative depth from the two consecutive frames is determined by
(6.7))

Zin/zi=[TxRV ||[/|T" x Vi (4.17a)

when T’ x Vi, #0, which, in turn, means that if ‘2" is known we could find 'z, ' or the

surface shape of the object after motion. This information may then be used for the

identification of the object in motion with any other object whose shape information is

stored in the computer.

When the translation T is not zero and is known, the absolute depths ‘z;’ and ‘zj,; ’

cduld be determined from the following equations :

Ziy==|TxRV[[/[[Viax RV, | (4.17b)
and

Zi == |IT X Vig ||/ [Vinx RV; |5 (4.17¢)

As before, the 'x’ and ‘y’ coordinates of the features, whose 2D image coordinates were

available, can be found when their ‘2' coardinatas ara sammiitad

A Al W WA

For finding the shape of the object surface one needs to know the correct solution
for the rotation matrix R. If the coordinates ‘2’ and ‘2’ of any point are both of the same
sign, the corresponding rotation matrix ( R ) is considered. When the signs are opposite,

the other rotation matrix ( R’ ) is considered as the final result ([4,5)).

The two solutions for the rotation matrix are found since the matrix Q has two and

only two decompositions ([7])

’ ’ ’
Q=TxR=(-T)x R,

where T’ is any real vector or equals A T.
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One of the rotation matrices corresponds to the motion of the object on the same
side of the camera ( either front or back ) and the other one to the motion from either
front to the back or back to the front. In our analysis, we reject the second solution for

the rotation matrix corresponding to a situation not encountered in practice.

4.2.2. Range/interframe Range Rate

The range of the available features, which determines the depth of object surface

(up to a scale factor at instant t; ), is defined as

Ri =23, (4.19a)

as conventionally, the object is viewed along the z-axis of the camera coordinate sys-
tem. The interframe range rate ( up to a scale factor ) between any two consecutive

frames F; and F;,, at instants t; and t;,,,,is given by

Riju = 9‘“}3}9“ = ZMHZEN (Atsty-t). (4.19b)

4.2.3. Interframe Attitude/Attitude Rates

The rotation matrix R can be estimated between the two consecutive frames F;

and F;, from the following equations :
R=Ri'Riis1Ri " Ri=Riy ' Ry R (4.20)
assuming the relative transformation parameters between these frames is known.

Once the rotation matrix R is estimated, the attitude parameters of the object are

computed. The details are given in Appendix A.
The interframe attitude rates between the two frames are given as

the angular velocity of rotation @ ={ 8.1

-8 Y/ A
+1 Vi Ji e

1A N4~
i \‘re la)

if the first representation of R is used ( Appendix A ). If the second representation of R is

used, then
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roll rate , 9= (0j41—6; )/At: (4.21b)
yaw rate ,0y=(%ia—-¢;)/At and (4.21¢)
pitch rate ,@y=(Vi -y ) /At . (4.21d)

No sudden changes in the interframe attitude parameters are assumed.

4.2.4. Object Tracking

The process of tracking can be divided into two tasks : acquisition and tracking
proper ( see Gennery [8]). In acquisition portion, the object is located in the scene and
its attitude/attitude rate parameters are determined to help in the process of recognition
later. This portion is divided into three major portions : feature tracking, the stereo solu-
tion, and matching to the object model. The features are detected and tracked over
several frames, corresponding to different instants of time. These features are matched
between consecutive frames, and the motion parameters are estimated by the stereo
solution using the GIPC algorithm. From the ‘2’ co-ordinate of any feature, distance r;
with respect to the reference frame is determined to a scale factor. The scale factor is
removed when the feature is projected onto the image plane of the camera. Thus, know-
ing the motion parameters between the two consecutive frames, it is possible to esti-
mate the position of the feature, on the image plane, in the next frame. Each time this
information about the motion parameters is fed to the tracking proper phase. This com-

pletes the tracking portion of the problem.

The process of recognition is carried out after the object surface is reconstructed,
and hence identified, from a knowledgs of 3D object space coordinates of the features
that reside on the surface of the object. Since we find the 3D coordinates up to a scale

factor, the object can be matched, and recognized, with a reference object in the main

computer memory to a scale factor. For example, primitives like a cube can be identified
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to be a cube stored in the computer memory. It is the shape that matters for the process

of recognition, not its size.



46
CHAPTER YV
ERROR ANALYSIS
5.1. PRELIMINARY REMARKS
5.1.1. Sources of Error

Since the IPC/GIPC algorithm can be implemented using a sequence of images of
an object, any error in the input data and sensor parameters becomes a source of inac-
curacy in the output data. The input data is the set of feature co-ordinates of the object,
and the oufput data are the 3-D motion parameters. The perturbation errors, as shown

by Ray et al. ([28] ), aredue to :
(i) spurious noise in the sensor ( camera ) and its display ( monitor )
(ii) defocusing,
(iii) limited resolution of the camera,
(iv) motion blur,
(v) thermal instability of light sources,
(vi) optical system aberrations,
(vii) diffraction effects,
(viii) stray light, and
(ix) optical properties of the medium.

In this chapter, we shall analyze the effect of changes in the input parameters on
the output parameters. The three methods for the IPC/GIPC algorithm, as presented in
chapter lll, have been presented separately. Since various steps are involved in these
methods, the propagation of the error will be studied, and the error bounds found, at
each stage of the algorithm ( see the flow chart in Fig.5 ). Before the sensitivity of the

IPC/GIPC algorithm to error in the input parameters éan be analyzed, we shall define
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error, relative error, and error bounds.
5.1.2. Definitions
The following definitions are taken from Hildebrand ( [29] ).
5.1.2.1. Error, Relative error

If N is true value of any parameter, N its approximation, then

Error, E =True Value — Approx. =N - N (5.1a)
and
- - True Value —Approx _ N -N
Relative Error, RE = WEL_ e (5.1b)

5.1.2.2. Error bounds

When any function f(N), with a continuous derivative, is evaluated with N replaced

by an approximation N, the relation

tN)-f(N)=f'mN-N) ; N<n<N ;

gives us
Ve e cmens I 1 el 1 ... 1
TEUWN) T =2 1T M) Imxl E(N) | (5.2a)
| RE (f(Ny) | s —mw—' PO Lo | gy | (5.2b)

The maximum error in the product P = NN, is found to be

o NGNp-NGN, _ _
RE(P)= —NN; 1 - (1-RE,) (1-RE3) (5.3a)
ie.,
RE(P)=RE;+RE;-RE;RE, (5.3b)

where RE(P) refers to P, RE; to N; and RE; to N, | RE(P) | is largest when
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RE,; and RE; are negative. Thus, generally if P = N;,N,,......Nm,
RE(P)= 1-[(1-RE,) (1-RE))....(1-REm) ] (5.3¢c)

5.1.2.3. Errors In simultaneous equations
in order to investigate errors, we suppose that the set actually solved is

ay - . . apn X1 Ci

) = : (5.43)
Gn) - . . 8pp Xp Cn

whereas the true values of the coefficients are aqg + 8a 43, and the true values of the

right-hand members are ¢, + 8c,. If the true values of the unknowns are denoted by

Xo+ OX o , We see that

an . . . amn 8X1 8C1 8311 . . 831n X1
I I N e I, ' (5.4b)
an] . s . ann SXn 8Cn aan] . aann Xn

assuming the products of errors, of the form (824 (8xy), to be relatively negligible.

Thus, if the errors 8a,g and 8¢, were known, the solution errors 8x, would be obtained

by soiving a set of equations which differs from the set actually solved only in that the

right-hand member ¢ is to be replaced by n, where
na=8cu—(Xa8aa] + ... +Xn8aan ). (5-5)

In practice, the errors 8ap and 8¢ do not exceed a certain positive no., say ¢, in mag-

nitude, so that
—€ < 3aq4p, 0cq < €.
In such cases, we are certain only that

Ine | < E, (5.6a)
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where

E =[1+4]x1] +|x2|+ -+ +|xa|] €. (5.6b)
Therefore,

&y = Aymi+Apa+tAn e (Y=12,..0) (5.7a)
and

|8xy] < [|A'.,1|+|A'.ﬂ|+...+|§,n|] E (5.7b)

where K,, (a=1,2,...,n) are the elements of the yth row of the inverse of the coefficient
matrix. Thus, if the inverse matrix is calculated, approximate upper bounds on the
effects of input errors are obtained from the above equation. They are not strictly upper

bounds. However, they may be accepted as close approximations to true upper bounds.
5.2. ERROR PROPAGATION IN THE PRESENT ALGORITHMS

In this section, the error propagation through various stages in the present algo-
rithms is investigated. The sensitivity of the essential elements to the error will be stu-
died before the effects of error on the motion parameters, found by using the three
107 ihe iIFC aigoriinm, are presented ( Fig.5 ).

5.2.1. Error in matrix Q due to error in feature co-ordinates

For convenience, the matrices Q and R have been redefined as

ql g2 q3 q: 92 Q3 Qi1 912 Qi3
Q=(q49596|=| 04 95 Gs|[=| 921 Q22 G2 (5.8a)
q7 98 q9 Q7 Gs Qo Qa1 Q32 Q3

[.l'! fs r3] I-ru Ti2 l':3'l

rrl r2 r3]
R=[r4r5r6(=|rqrsrg|=1ryrnryl. (5.8b)
r7r8r9 ry rg fg r3) 3 Fa3



50

In our case, the equation actually solved is ( eqn.(3.3a) )

NQ =G (5.9a)
and the true equation to be solved is

NG =G; | (5.9b)
where N =N + 5N and &’ = Q' + 5Q’ . Therefore,

NQ +3NQ +N Q' =G (5.9¢c)

where the products of errors are neglected, and G, @, N and N, are given by

eqns.(3.3b,3.3¢,3.3d,3.3e). Let

ONg=(8aq1, 8an, 883, " * -, 8a4g) ; (5.10a)
where

daq =X o' X+ 8Xo X' ; (5.10b)

02 =0Xo Ya+0YoeXd ; (5.10¢)

da3=0Xy ; (5.10d)

02 =0Yq Xg+0XoYd ; (5.10e)

O8gs=0Yo Ye+8Ya Yy ; {5.10f)

Sau=8Yy ; (5.10g)

88y =6Xg; | (5.10h)
and

Sdaz=5Yg. (5.10i)

Therefore, using eqn.(5.4b), it follows that
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Uil 8311 .
, M e ,
NSQ =-NQ'=-| "|=-| ° ' = |«&. (5.11a)
. dan,
In egn.(5.11a), if N is square and non-singular,
MNe=0801 Q1+ 82q2+..... +88,3qs and |n,| < E ; (5.11b)

E =|8aa1|[a1] +|8ac2||q2| + ... +]820s] |qs] =( |q1| +]G2] + ..... +|qs] ) £(5.11c)
for(~€ < dagp < €). Therefore,
qu = A"{l m +A.yz MN+...+ A'Yg n (y= 1,2,...,8) (5.128)

and

8ayl < [1Anl+1 Agl+ .41 Agl] E ; (5.12b)
where Avu (o =12..8) are the elements of the inverse, or the pseudo-inverse
(eqns.(3.4a,3.4b)), of N.
If N is not a square matrix, we define a residual matrix by
SN*=N*-N+; (5.12c)

where N* and N+ are the pseudo-inverses of N and [ respectively. Then it is shown

that, as shown by Lawson and Hanson ([30]),

I8N*[[ < [ISN7 || +[| 8NF || +]| 8N || ; ~ (5.12d)
where

1SN I < [18M)] . N L N (5.12e)

I8NF || < [|3N]| . fiN+||2 (5.121)

and
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NS 1| < [I8N| . IN*Jj2 (5.129)

5.2.2. Error in rotation matrix R due to error in matrix Q

The three methods for the computation of the rotation matrix R from Q have
already been presented in chapter lll. Here, we shall treat these methods separately in

order to investigate the propagation of error due to error in essential elements.

5.2.2.1. Error analysis using the first method

The propagation of error in the rotational elements, when the first method for IPC

algorithm is used, is investigated in this section.

If the SVD of @ (eqn.(3.5)), redefined as

G=Q+5Q =V AVE=(U+8U )(A+8A)(V +8V ) (5.13a)

| l' 0 0 Vl’t
=(u,ud,uy) | 0 o 0 Vz::
0 0 0'33' Vi3

is an approximation to the true value

on 0 0] vt

Q=UaVi=(u,unus) | 0 op 0 v (5.13b)
0 o C3 | |V3
where
Ujr Uz Ups Vit Vi2 Vi3
U=1un up us|, V= vy vy vy, (5.13c)
U3 U3y Uss V3 Vi Va3

and 3Q, 8, 84, 8Y being the error matrices, then the o'th singuiar vector u,’ of the per-

turbed matrix @ can be approximated by the first order Taylor Series expansion and is

given by, &s shown by Vaccaro ez ai. ([31] ),
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Ud =t G oy (a6 =), (a=12,3), (5.14a)
or

8ua=%:—;‘; | ay=a, 55, ' (5.14b)
or

aum

ISUaI< IW Iq,:q, ISQBI (514(:)

where qg’ (B = 1,2,...,9 ) are the entries of the perturbed matrix, and the derivatives of

the singular vectors are

du,’

rTe lag=as =5 oo Bs Va—-——(ua BpVe)Ug (5.144)
3 . GYZY : |
+ ._f?? [Oaa 2 (ug BBVY)+°m(cua2-cw2) (UY BBVG) uy ;
{(5.14e)
1, if y+A-1=p
[BB]Y)' = {0 s otherwise (5.1 40

and1<y<3, 1SA<3 .

Based on the above results, we can calculate the errors in the right singular vectors
from those in the left singular vectors by using the fact that the two matrices U’ and V',

by definition, should be orthogonal. Therefore, we get
V=-U*3Utv ; (5.15)
where U* =(yt ) -!

We shall now present the analysis of error propagation in rotational elements due

te errorin U and V. Since the actual rotation matrix is either ( eqns.(3.6a,3.6b))
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0
ojvt (5.16a)
®
or
010
R=U|-100{V!, (5.16b)
0 0w

where o = det.(U)/det.(V), the actual rotation matrix is either

0-10
R+0R=(U+8U) |10 O0|[(V+&V), (5.16¢)
00 o
or
010
R'+3R =(U+8U) | -10 0[(V+3V); (5.16d)
0 0o

where o’ =det.(U")/det. (V') = = , and might introduce a sign change so that |o'| =|w].

Therefore,

|6rag| < E; (5.17a)
where

Er = (lvpr] +[uca| +]vpz| +]ua | +|o]| |vps| +|0] [uw] ) & ; (5.17b)

where g =g, =¢, =g, (for —¢g, SOugpsSey; ~€,<8w<e, and —¢g, Sovepsey )

has been assumed.
Similarly, for other solution of the rotation matrix, we see that
[Orog’| <Ep . (5.17¢)

5.2.2.2. Error analysis using the second method

The error propagation in the rotational elements, for the second method, is studied

in this section.
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From the definitions expressed in chapter llI, we have

l2X 13=(Q2053-929%2)1 +(93951-921q3)] (5.18a)

+(q21 Q32— 922 q3; ) k

and

(l2x13)x 11=[q13(q23931-921933) - 912 (421 32— Q22 q31 ) ] | (5.18b)
+[911(921932-922931 ) - Q13 (422933 - 923 q32) ] §

+[912(92933-92392) - 911 (23931 - 921933 ) ] k .

where i, ,k are the unitvectors along x-, y-, and z-axes respectively. Also,
[ITI? = f‘é‘iq@% lQ|# and a=tZ,b=t2,c =t2;
o=

where [|Q||# is the Frobenius-norm of Q. Therefore, for the rows of the rotation matrix

R, we have
pr=ryi +rpf +rk; (5.19a)
where

ry=10923931-921953)q13- (921932 =92 931) 12+ & (922933~ G23932) ]

t i;q“"z (5.19b)

= fr, (Qap)
and so on. Similarly,
p2a=rui +rnj+ruk (5.19¢)
and

pa=ryul +ryj+ruk (5.19d)
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where
Py = Q3+t (913(q23 93 —021333 )=912(921932~922G31) )] (5.19)
= tr, (Qop)
and so on, and
F3y = [-921+t (913(Q23 Q3 —Q21XQ33)-Q12(C121 Q32~Q2:G31)) 1 (5.191)
= f'sn (an)
and so on. In general,
o = f"-a Qop) foro,pf=1,23 (5.19¢g)
Therefore, as before
|8rog| Squ;laf'”l; —€<8qpSeq . (5.20)
2 |
5.2.2.3. Error analysis using the third method
In this section, the error propagation, using the third method for the comoutation of
R from Q, is presented.
By definition, H = Q! and
Wo=heX T=Wqi+Wpj+Wuk ; (5.21a)
where h,, is defined in eqn.(3.20a), and
Wer=[{qzt ~quty ]; (5.21b)
Wo=[q3t-qiet; ] (5.21¢c)

and



Wa=[qiaty —C2tx ].

Thus, columns of R are given by
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(5.21d)

Ca=Wo+Wpx Wy=rioi +r0] +r3,k (0, B, y= L,2,3a#B=y) ; (5.22a)

where

Me=({aspt —qit; TMQiyty —qoyty I-[aipty —qzpt ] [Ax& Atz 1)+ Qzat; - Qe ty )

= ffx- [qB'Y]

(5.22b)

Faa=([d1pty —Q2p tx ] [q2yt; -qxty ]-[apt: —qspty 1Al ~axt 1)+ (Qaet —qiat; )

= f'a- [qBY]

(5.22c)

F3a=([Q28tz —Qspty J[Aaytx —Quytz 1~ [q3atx —quptz ] [tz —quty 1)+ @Quaty ~Q2a ty )

= fr,,. [QBY]

(5.22d)

In the above discussion, the combination o = 1, B =2, y=3 gives us first column, and so

on. Hence, the bounds are defined as

e € e ‘e . R e .
191a| = Er,, 5 [0M2a] S Er, ; |0F3a] S Ef,;

_ A,
RLP> m!
and
3 ) afr,, 1
B = 33 | 5

(5.23a)

(5.23b)

(5.23¢)

(5.23d)
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where -gq < dqpy < &.
5.2.3. Error in the motion parameters due to error in rotation matrix R

In this section, the errors in the motion parameters are studied separately for the

two representations of the rotation matrix R ( Appendix A ).
5.2.3.1. Using the first representation of R

From the definitions of the directional cosines of an arbitrary axis, and the angle of

rotation around this axis, we see that

vi=1£,(r2,r3,r4,r6,r7,r8)=£(r8-r6)d ; (5.24a)

va=1f, (r2,r3,r4,r6,r7,r8)=%(r3-r7)d ; (5.24b)

vi=fy (Vi,v2)=(1=(v2+v,2))2 (5.24c)
and

8=sin"1(xd/),; (5.244d)
where

d2=(rR —r62 4 (r3—rN2.afrd _ ro\2
Q2=(rR —r6)¥+(r3—rN+(rd—r2y2

As before,
of y, of v,
|8va Sé —a% |8rp| = eré -1 (5.25)

where —¢ < rp < g,anda=1,2,3andp = 1,2,....9. For v, we have

3t
or2

=3 'Lra—rﬁc)‘gfd-rZ) . (5.26a)

37\/;_ r8—r6)(r3-r7)y .
ary =F LBy,

= (5.26b)



v _ (r8-r6)(ra-r2) .
ard K '
df v, =g (r3-17Y2+(rd4-r2y .
ar6 d3 ’
ofv, _, (18-r6)(r3-r7)
ar7 a3

and
v _ o (131724 (r4-r2y
or8 ds :

Similarly for v, , we have

at,,

or2

—4 (13-77)(rd4-r2) .
d> ’

or3

=+ Lr3—r7)2d-!;(r4-r2)2 )

oar4

af V,

aré

r

and

r

af vy
org

_ r3- -
e r7&§r4 r2) .

—a+ (r3-17)r8-r6) .
+ 45 ;

q:g3-r7)2+;(r8-r6)2
d

=3 (r3-r7)(r8-r6)
d’ )

Also for v5 , we have

[v3|

1N

of y,
v,

<

!SV!I +

nY 4
aiy,
v

!8\/2' )
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(5.26¢)

(5.26d)

(5.26e)

(5.26f)

(5.27a)

(5.27b)

(5.27¢)

(5.271)

(5.28a)
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where

of vy _ Vi of v _ v

av, -_[1-(V12+V22)]l’2 and av, [1_(V12+v22)T7[r (5.28b)
For 6, we have

of ¢ )

1361 Ség Ty |1l (@=1,2,3) ; (5.258)
where

Mo o (ra-r2).

3 i e (5.29b)

afe . (r3-r7).

or3 & d ’ (5.29¢c)

ofe _, (ra-r2).

ara =% d ’ (5.29d)

are =7 LBz 16, (5.29€)

oro a ? )

ofe - (r3-r7).
ITEF g (5.291)

oo _, (r8-16) .

ors8 i (5.29g)
d =d ( 1- d2 /4 )112 i (szgh)
Therefore,
180] < Eo; (5.30a)
where

25f

T é'rﬁl ' (5.30b)
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5.2.3.2. Using the second representation of R

The second representation of the rotation matrix R is used in this case. By

definitions, we know that

Roll =8 =fg(r6)=sin"1ré6: (5.31a)
=t = =ain-1]| - r3
Yaw = o= f ¢(r 3,r6) =S8in [ m—)m—] (531b)
and
e  aime 4
Pitch =y = f \{r 4,1 6) = sin-! [-_(—1—::_67)"77] . (5.31¢)
Therefore,
88| < ltgre) ||ore|; (5.32a)
where
P - 1
Similarly,
1861 < 190 lar3)+ g:%!wrﬂ . | (5.33a)
and

5r6] . (5.33b)

af
i3

In eqns.(5.35a,5.35b), using the properties of rotational elements from Appendix A, we

I5y| < !%'F}!wm +

have

oy 1.
a3~ T9°

—_—
ai
w
E.N
v

S
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ofg ___ r3r6 . (5.34b)
aro ro(1-ré6)’
oy __ 1 (5.34c)
ord rs

and
of y - r4ré

- (5.34d)
are rs(1-ré?)
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CHAPTER VI
EXPERIMENTAL RESULTS

~ In this chapter, we present some experimental results for the IPC and the GIPC
algorithms. The algoritims have been tested successfully on simulated and real data.
A brief description for these experiments will be given in the following two sections. In
the third section, the various error plots will be discussed. These plots indicate the rela-
tionship between the errors in the input set of data ( co-ordinates of the features ) and

the errors in the output data ( motion parameters ).

For simulation purposes, the data, kept in a file called test_coord, appear in the
form of a set of 3-D co-ordinates of feature points (Fig.8). This set of points is rotated,
and then translated, with some reference parameters to another set of points. These two
different sets of points act as the inputs to the IPC and the GIPC algorithms. A brief
description of the implementations of these algorithms in the form of computer programs
is presented in Appendix G. For experimental results with real data, the data is Keptin a
separate file called nasa_data (Figs. 13,14), which appear in the form of either 2-D or
3D co-ordinates of the features of the object, corresponding to before and after the
motion of the object whose parameters are to determined. The last two rows in this file
indicate the motion ( in terms of roll, yaw, and pitch in degrees ) of camera frame F; to

another frame F;, and the orientation of F; with respect to the standard trame S.
The details of the experiments with both sets of data follow :
6.1. Using Simulated Data

The first three experiments, as indicated in Fig.9 through Fig.11 , are run with simu-

lated data. All these experiments use the first method of the IPC algorithm.
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Experiment 1 :

In the first experiment (Fig.9), the first representation of the rotation matrix R is
used. In this case, the reference motion parameters are :
vi=0.1, v,=02, 0=12°, t, =1, ty=1, t; =1, and the number of points used for
the analysis equals 8. As described in chapter lll, we get two different solutions for the
rotation matrix, and hence for the parameters. The test for choosing the correct solution
of the rotation matrix has been applied, and the surface shape has been computed. The
translational vector is estimated up to a scale factor. The same procedure applies to

other two experiments also.

Experiment 2 :

In the second experiment (Fig.10), the second representation of the rotation matrix
has been used. In this case, the reference motion parameters are
Roll = 11°, Yaw = 12°, Pitch = 13°, t, = L,y =2,t, =3, and the number of points
equais 8.

Experiment 3 :

This exnerlmpnt (FIﬂ 11\ fQ comeourhat similar 4n dha £ i

Simhar © wie wist expenment, bui ine

number of points used in this case is 16.

6.2. Using Real Data

The experiments using the real data are shown in Fig.12 through Fig.20. Separate
experiments, corresponding to 2-D images of the two positions of an octbox, were con-
ducted. The octbox has two paralle! octagonal faces opposite to each other, in addition
to eight rectangular faces. In the first case (Fig.12b), the camera taking the picture was
kept at the same height as the object in such a way that the center of geometry of the
object coincided with the origin of the image plane of the camera. The octbox was

rotated around the x-axis by 15°. In the second case (Fig.12c), the octbox was rotated
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around the x-axis by 105°. In both cases, rotation around the x-axis means that the
angle of rotation, by definition, is roll, or equivalently, the directional cosines of the arbi-
trary axis around which the octbox rotates, are given by

v1=10; v2=0.0; v3=0.0 ( Appendix A ). The translation along the three axes is 1 unit
each. The data for these two cases of octbox rotations are shown in Fig.13 and Fig.14
respectively, where 3-D co-ordinates of the vertices of the octbox before the motion and

their 2-D co-ordinates after the motion are given.

Experiment 4 :

This experiment (Fig.15) shows how the IPC algorithm computes the parameters
for the first case of octbox rotation, using real data. As expected, the angle of rotation
found is —15° ( there is an ambiguity in the sign of motion parameters, which is
explained in Appendix A ).

Experiment 5 :

The fifth experiment (Fig.16), similar to the fourth experiment, computes the param-
eters for the data using the second case of the octbox rotation. In the forth and the fifth

experiments, the first representation of the rotation matrix has been used.

Experiment 6,7 :

In the sixth and the seventh experiments (Fig.17,18), the second representation of
the rotation matrix is used for the same set of data. in the sixth experiment, the angles

come out to be right. But in the seventh experiment, addition or subtraction of angles by

180° takes place, because sin 8 =+sin (1806 ),and cos 6 =- cos (180%9).
Experiment 8,9 :
The GIPC algorithm has been applied to the fourth and fifth axperiments, and the

results are shown in Fig.19 and Fig.20. In both the experiments, the camera was

rotated through 10° around its x-axis. With the same set data for these experiments for
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the octbox rotation (Figs.13,14), the directional cosines are found to be same. The
angles of rotation are ~5° and 95° respectively, which means that the angles of rotation
of the octbox are subtracted by the amount of rotation by the camera, and that indeed

should be the case. These two experiments show the success of GIPC algorithm with

real data.
6.3. Experimental Error Estimates

Because of the difficulties in determining the constants in the various inequalities
appearing in the error bounds of the preceding chapter, we obtained error estimates
experimentally. This was done by perturbing the data and measuring the corresponding
errors in the parameters calculated by our algorithms. These errors are sample errors

rather than averaged ones.

The error plots for previous experiments are shown in Fig.21 through Fig.24. In
these plots, the x-axis represents the magnitude of the percent relative errors in the
input set of co-ordinates, and the y-axis indicates the corresponding magnitude of per-

cent relative errors in the motion parameters. A brief discussion of these plots follows :

Plots 1,2 (Figs.21.22):

These are the plots drawn for the first experiment (fig.9). Here, the first representa-
tion of R is used. In the plots of Fig.21, al, bl, thi represent the error curves for the
motion parameters ( directional cosines, and the angle of rotation ) found by using the
first method of the IPC algorithm. Similarly, ali, bll, thil represent the error curves for the
motion parameters found by using the second method. Another plot is drawn in Fig.22 in
a similar manner, where the error curves for the motion parameters found by using third
method ( alll, blil, thill ) are compared with those found by the second method. As can
be observed from these two plots, the second method gives better results than the first

method.
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Plots 3,4 (Figs.23,24 ) :

These plots are similarly drawn for the second experiment ( Fig.9 ), but the second
representation of R is used. In these plots, rl, yl, pl, and rll, yil, pil, and rlil, ylil, piil
represent the error curves for the motion parameters ( roll, yaw, pitch ) using the first,

second, and third methods respectively.

From these four plots, and various others, we have found that the first method of
the IPC algorithm gives poorer results than the other two methods. A telescopic increase
in the output errors is due to the reason that the IPC algorithm assumes rigid-body

motion of an object, and an error in the input set of co-ordinates amounts to the fact that

the object has deformed.
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Fig.8 : 3-D data kept in test_coord for simulation purposes.
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THE DEMONSTRATION OF THE IPC ALGORITHM

USING THE FIRST METHOD

The estimated Translational vector (up to a scale factor) is

16.599274

Estimated Rotation Matrix is either R given by

-0.217034
0.558248
0.800784

0.978366
0.203084
-0.039452

16.599274 16.500274

0.736785  0.640347
-0.444447  0.700590
0.509524  -0.314849

or R’ given by

-0.202210 0.043712
0979022 -0.016531
0.025051  0.998507
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The directional cosines of the axis and the angle of rotation about the axis, ( corresponding to R and R’ )

are respectively

0.622784
188.823823
0.100000
12.000000

0.522951 0.581947

0.200000 0.974679

Conclusion : Choose R’ and Its assoclated parameters as the final solution. The estimated coordi-

nates before and after motion are

x y
66.397096 66.397096
199.191287 18.919130
215.790561 18.259202
232389835 16.599274
132.794192 1.891913
33.198548 199.181287
663.970958 3.817833
6630.708575 6.639710

4

132.794192
68.057022

38.178329
199.191287

3.318855
182592013
348.584753
663.970958

x

73.938506
210428356
225608113
249312173
146.262946

16.782605
680.671384
6540.347246

Fig.9 : Details of Experiment 1.

Y

92.892411
75.420082
77.667964
76.752148
45.462933
215335477
149.416513
1360.544109

7
148292158
77222349
46.679838

206.820405 -

14.726347
202.671958
338.703528
418.056419



The estimated Translational vector (up to a scale factor) is

1.669470 3.338040 5.008410

THE DEMONSTRATION OF THE IPC ALGORITHM

Estimated Rotation Matrix is either R given by

-0.767551  -0.006352
0.574024 -0.451791
0.285241  0.892101

0844154  0.258690
-0.220818  0.956468
0244568  -0.135086

0.640957
0.682921
0.350419

or R’ given by

-0.204092
0.150809
0.960176

USING THE FIRST METHOD
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The directional cosines of the axis and the angle of rotation about the axis, ( corresponding to R and R’ )

are respectively

43.072326 208.665956
11.000000  12.000000

-128.204875
13.000000

Conclusion : Choose R’ and its assoclated parameters as the final solution. The estimated coordi-

nates before and after motion are

X
6.677880
20.033639
21703109
23372579
13355759
3338940
€6.778796
667.787960

y
6.677880

2.003364

1.836417

1669470

0.200336
20.033639
0.383978

0.667788

2
13.355759
6.844826
3.839781
20.033639
0333894
18.364169
35.058868
66.778796

x
6.976114
19.705580
21.851833
20.079949
14.263038
6.256468
57.663016
618.707633

Fig.10 : Details of Experiment 2.

Y

10.799921
2.137359
1.035640
3.597245
0.645072
25.267227
-4.350215
-130.739996

r 4
18.563399
16.209603
13.755080
29.734889
8.568331
20.751584
54.951166

232356948
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THE DEMONSTRATION OF THE IPC ALGORITHM
USING THE FIRST METHOD

The estimated Translational vector (up to a scale factor) is
16.599260 16.599250 16.599259
Estimated Rotation Matrix is either R given by

0.978366 -0.202210 0.043712
0203084 0979022 -0.016531
-0.038452  0.025051  0.998907

or R’ given by
0217034 0.736785  0.640347

0.558248 -0.444447  0.700590
0.800784 0.509524 -0.314849

The directional cosines of the axis and the angle of rotation about the axis, ( corresponding to R and R’ )
are respectively

0.100000 0200000 0.974673

11.899999

0622784  0.522951 0.581947
188.823824

Conclusion : Choose R and Its assoclated parameters as the final solution.
The estimated coordinates before and after motion are

X y z x’ Yy z
66.397060 66.397060 132.794120 73.838464 92.892358 148.292074
199.191071 19.919108 68.056848 210.428132 75.428002 77222267
215.790339 18.259183 38.178290 225.697885 77667885 46679791
232.389208 16.599229 199.180750 249311534 76.751952 206.819876
132.784053 1991911 3.319852 146.262807 45.462890 14.726333
33.198531 199.191185 182591919 16.782597 215.335364 202671852
663.969597 3.817825 348.584038 680.670016 149.416213 338702848

6639.676700 6.639677 663.967670 6540.314956 1360.537392 418.056355
879.760729 350.244372 54.777554 808.898828 537256147 45382231
199.191197 380.123104 49797790 125702172 428.57750i 68.006540
199.191037 41.488133 -680.568376 173.340452 108.830128 670.045514
165.992007 331.985813 1659.920066 184.428435 347.890280 1676.482407

1842.562200 18608.218256 $9.597957 -1830.117016 18606.999055 §09.549479
182.592356 2191.108274 49.797915 -245.646196 2188,000353 114.028526

1842521231 2008.514135 16.599200 1413.843197 2356.890036 10.803764
199.195253 15105.640012 ~16.589604 -2843.754732 14846.077343 370.570590

Fig.11 : Details of Experiment 3.
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X y
0 -1
-5 -1
-2 1
1.5 1
<15 1
0 1
15 1
2 1
0 0
0 0

Fig.13 : Real data kept in nasa_data for the first case of octball rotation.

F4

-1
-0.5
1
-05
25
-1
-0.5
1
0
0

x’

3414214
-3.058409
-0.585786
-0.238625
0.379110
0.449490
1.193126
1.757359

Y’

7.595754
10.654163
-0.131652
0.584223
-1.268983
0.767327
0.584223
-0.131652
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X y
LS |
-1.5 -1
-2 1
<15 1
-1.5 1
0 1
15 1
2 1
0 0
0 0

Fig.14 : Real data kept in nasa_data for the second case of octball rotation.

XI

-4.44949
-1.936348
-0.449490
-0.644449
-0.136105
3414214
322247
1.348469

YI

-1.303225
0.633123
0.767327
2.700675
0.359012
7.595754
2700675
0.767327
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THE DEMONSTRATION OF THE IPC ALGORITHM

USING THE FIRST METHOD

The estimated Translational vector (up to a scals factor) is
3863706 3.863707 3.863717
Estimated Rotation Matrix is either R given by

-0.333334 0.816496 0.471405
0666666 -0.149429 0730224
0666667 0557678 -0.494521

or R’ given by

1.000000 0.000000 -0.000000
-0.000000 0.965926 -0.258819
0.000000 0258819 0.965926

The directional cosines of the axis and the angle of rotation about the axis, ( corresponding to R and R’ )

are respectively

0574043  0.649617 0.498469
188.643723

1.000000  0.000002 0.000000
344999963

Conclusion : Choose R’ and Its assoclated parameters as the final solution.

Fig.15 : Details of Experiment 4.
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THE DEMONSTRATION OF THE IPC ALGORITHM

USING THE FIRST METHOD

The estimated Translational vector (up to a scale factor)is
1035277 1.035273  1.035283
Estimated Rotation Matrix is either R given by

1000000  -0.000002  0.000003
0.000002 -0.258819 -0.965926
0.000003 0.965926 -0.258819

or R’ given by

-0.333332  0.471405  -0.816496
0.666667 0.730223  0.149431
0.666667 -0.494521 -0.557677

The directional cosines of the axis and the angle of rotation about the axis, ( corresponding to R and R’ )

are respectively

1.000000  -0.000000 0.000002
105.000000

0395384  0.910658  -0.119830
234521795

Conclusion : Choose R and Its assoclated parameters as the final solution.

Fig.16 : Details of Experiment 5.
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THE DEMONSTRATION OF THE IPC ALGORITHM

USING THE FIRST METHOD

The estimated Translational vector (up to a scale factor) is
3863706 3.863706 3.863707
Estimated Rotation Matrix is either R given by

-0333333 0816496  0.471405
0666667 -0.149429  0.730224
0666667 0557678 -0.494521

or R’ given by

1.000000 0.000000 -0.000000
-0.000000 0.965926 -0.258819
0.000000 0258819 0.965926

The directional cosines of the axis and the angle of rotation about the axis, ( cormesponding to R and R’ )

are respectively

46905138  223.629053 -102.633685
-14.898999  0.000008 0.000004

Conclusion : Choose R’ and its assoclated parameters as the final solution.

Fig.17 : Details of Experiment 6.



THE DEMONSTRATION OF THE IPC ALGORITHM

USING THE FIRST METHOD

The estimated Translational vector (up to a scale factor) is

1.035277

1.035273

1.035281

Estimated Rotation Matrix is either R given by

1.000000
0.000002
0.000003

-0.333332
0.666667
0.666667

The directional cosines of the axis and the angle of rotation about the axis, ( comresponding to R and R’ )

-0.000002
-0.258819
0.965926

0.471405
0.730223
-0.484522

are respectively

-75.000021
8.593925

0.000003
-0.965926
-0.258819

or R’ given by

-0.816497
0.149431
-0557677

180.000604 -179.999529
124333547  -42.394949

Conclusion : Choose R and Its assoclated parameters as the final solution.

Fig.18 : Details of Experiment 7.

78



The estimated Translational vector (up to a scale factor) is

3.863706

Estimatsd Rotation Matrix is either R given by

-0.333334
0.772304
0.540773

1.000000
-0.000000
0.000000

3.863707

0.816496
-0.050319
0.575154

0.000000
0.996195
0.087156

THE DEMONSTRATION OF THE GIPC ALGORITHM

USING THE FIRST METHOD

3.863717

0.471405
0.633257
-0.613810

or R’ given by

-0.000000
-0.087156
0.996155
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The directional cosines of the axis and the angle of rotation about the axis, ( corresponding to R and R’ )

are respectively

0.576384
182886128
1.000000
354.999983

Conclusion : Choose R’ and Its assoclated parameters as the finatl solution.

0.688845 0.438843

0.000006  0.000001

Fig.19 : Details of Experiment 8.



THE DEMONSTRATION OF THE GIPC ALGORITHM

USING THE FIRST METHOD

The estimated Translational vector (up to a scale factor) is
1035277  1.035273  1.035283

Estimated Rotation Matrix is either R given by

1,000000 -0.000002 0.000003 0.000003 -0.087156 -0.996195 0.000002 0.996195 -0.087156

or R’ given by

-0333332 0471405 -0.816496
0.772304 0633257 0.050321
0.540773 -0.613810 -0.575153

The directional cosines of the axis and the angle of rotation about the axis, ( corresponding to R and R’ )

are respectively

TOCCTE SSSSE 6.600002
95.000000
0431055  0.880937 -0.195299
230.385837

Conclusion : Choose R and its assoclated parametars as the final solution.

Fig.20 : Details of Experiment 9.

80



| percent relative error in output |

Jo

20+

al

bl

//

o
-

| percant relative error in input |

Fig.21 : Error Plots for Experiment 1 using First and Second Methods.
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Fig.22 : Error Plots for Experiment 1 using Second and Third Methods.
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Fig.23 : Error Plots for Experiment 2 using First and Second Methods.
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Fig.24 : Erior Plots for Experiment 2 using Second and Third Methods.
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CHAPTER VII
CONCLUSIONS

Summary
In this research, we worked on the following problem :

Given an image-sequence of a moving object, obtain its 3-D motion parameters.
These parameters give us information regarding the attitude, attitude rate, surface
shape, and track of the object. In addition to this, if there are multiple objects in the
scene moving with different velocities, we can segment the scene so that this informa-
tion is used for the pattern analysis of the scene later. From the knowledge of the distri-
bution of the surface points, the objects in the scene can be matched to some models

stored in the computer so as to complete the recognition part of the problem.

We used the Image Point Correspondence ( IPC ) algorithm to solve this problem.
This algorithm assumes the correspondence of the 2-D image co-ordinates of the
features of the object to be known over consecutive frames. The problem of feature
extraction from an image-sequence has not been deait with in this research. Three dif-
IgTENt MElnods were émpioyed for this purpose, and implemented in the form of com-
puter programs, in an effort to perform a thorough survey of all the existing techniques
based on image point correspondences, because the IPC algorithm applies to the
objects with curved surfaces, with a few exceptions. The perspective projections of the
object have been considered. Simple linear algebra techniques, instead of iterative pro-
cedures, are employed. The application of this algorithm to three types of motion
analysis ( monocular vision, stereo vision, and stereo motion ) was presented. Their

equivalence in terms of motion-analysis equation was also shown.

in this research, the new developments are :
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(i) The extension in the IPC algorithm, which we called the Generalized Image
Point Correspondence ( GIPC ) algorithm. A generalized expression for motion-analysis
equation was derived, and the other three cases of motion-analysis were found to be
special cases of this case. The applications of such a situation of motion analysis are

explained in chapter |.

(i) The study of error flow through the three methods for the IPC algorithm. Expres-
sions for error bounds were derived for various stages of the algorithm. Experimentally,
the perturbed set of co-ordinates were fed as the input to the IPC/GIPC algorithms, and
the errors in the output set of motion parameters were examined in terms of various
plots of percentage of modulus of relative errors in input set of co-ordinates versus per-

centage of modulus of relative errors in the motion parameters.
Future Work

The research done could be extended by developing the following algorithms for

future work :

(i) The first algorithm should enable one to extract features of an object from its

image-sequence at a sufficiently fast speed, with less computer time.

(i) A second algorithm is needed to match these features over consecutive frames,

using some information about the object and its surface.

(iit) A third algorithm should be developed which would enable one to track these

features over several frames.

(iv) A fourth algorithm should use less than eight points as the input to the IPC
algorithm by finding some sort of relationship between the surface points, or by using a

priori information about the shape of the surface of the object.



87

APPENDIX A
THE ROTATION MATRIX

~ In this appendix, the description and the properties of the rotation matrix R, and the
computation of the rotation parameters from it, as shown by Ganapathy ([27]) and

Huang et al. ([5)), has been presented.

Let
P rir2r3

R=|p:|= [cl (.73 c3]= rars5ré (A.1)
P3 r7r8r9

where pq (o = 1,2,3) is the o'th row of R, ¢, (a = 1,2,3) its a’'th column, and r1 12,...,r9

are its elements.
A.1. THE PROPERTIES OF THE ROTATION MATRIX R

The rotation matrix R is 3X3 orthonormal matrix (i.e., R-! = R!) of the first kind
(i.e., det(R) = +1) and not of the second kind (i.e. its determinant is not -1 ). Its property

that the determinant must be unity implies the following constraints

ip1ll 2=lIp2ll 2= llp3fi 2=1; (A.23)

P1=P2X P3; P2=pP3XP1; P3=p1X P, (A.2b)
and

P1.-P2=P2.P3=P3.p;=0; ' (A.2c)

where the operations || . || 2, x and . represent the norm, cross-product, and dot-product

respeciively. Also,
lleill 2=Jlea]l 2= lles) 2=1; (A.2d)

€C1=C2XC3; C2=C3XC); €3=C;XCy (A.2¢)



88

and
€;.€2=C€7.€63=C3.0:=0; (A.2f)
The equations (A.2a) through (A.2f) can also be written as
F124r224r32=r424r52+r62 =172 +r82+r92=1; (A.3a)
P124+r 824172 =r224r524r82=r32+r62+r92=1; (A.3b)
rl=r5r9—r6r8; r2=r6r7-rar9; r3=r4r8-r5r7; (A.3c)
rd=r8r3-r2r9; r5=r1r9-r3r7; r6=r2r7-r1r8; (A.3d)
r7=r2r6-r3r5; r8=r3r4-r1r6; r9=r1r5-r2r4 (A.3e)
rird+r2r5+r3r6=r4r7+r5r8+r6r9=r7r14+r8r2+r9r3=0. (A.3f)
and
FrIr2+rd4r5+r7r8=r2r3+r5r6+r8r9=r3r1+r6r4+r9r7=0. (A.30)

All of these are not independent. Their interdependence can be recognized from

the following identity :

(rird+r2r5+r3 r6)2=(r12+r22+r32)(r42+r52+r62)—(r1r5—r2r4)2

—(r2r6-r3r5)2—(r3rd~-rir6)2. (A.3h)

A.2, THE TWO REPRESENTATIONS OF THE ROTATION MATRIX R

Ths rotation matrix R, used extensively in the motion analysis, can be expressed in

either of the two representations explained in what follows :
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A.2.1. The First Representation

The rotation of an object by an angle 6 around an axis, passing through the origin
of the frame with which the camera co-ordinate system aligns, with directional cosines

V1,V2, Vs, is expressed as a rotation matrix R by Huang et al.( (5] ), where
Vi2+(1-v;2)cos 6 v;vy(1-cos 6)—v;sin 6 Viv3(1~cos 6)+v,sin 6
R=|viv(1-cos 0)+Vv3Sin 0 vy2+(1-v,2)cos @ V2Vv3(1-c0s 0)-v;sin 6
ViV3(1-C0s 8)-v,sin 6 vav3(1~C0S B)+vysin @  v32+( 1-v32)cos 6
with the additional constraint : (A4)
ViZ+vy24v32=1, (A.5)
A.2.1.1. Computation of the rotation parameters

Any matrix can be decomposed uniquely into a sum of a symmetric and a skew-

symmetric matrix. Thus
R=S +K; (A.6a)

where S is symmetric and K is skew-symmetric. Since

'‘Rt=8 -K ; (A.6b)
we get
S=12(R+R'); K=12(R ~R!); (A7)
where
Vi2+(1-v12)cos 8 vyv,(1-cos ) viv3(1-cos 6)
S = Viva(1-€050) v22+(1-v22)c088 wvyv3(1-cos 0) (A.8a)
viv3(i-cos 9) Vav3(1-c0s 6) v32+(1~v32)cos @

and
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0 - V3 V2
K=sin0 | vs 0 -v{. (A.8b)
-v2 vi O

As is clear from eqgn.(A.4), there are exactly two sets of rotation parameters
corresponding to a particular rotation matrix R, with one set the negative of the other.
The relationship between R and its parameters may be regarded as one to one because

they can be computed very easily, once R is determined.
From eqn.(A.4), we see that

0 r2—-r4r3-r7
K=1/2|rd-r2 0 r6-r8}; (A.9)
r7-r3r8-r6 0

or

V1.Sin B=(r8~r6)2; v,.s5in 0=(r3-r7)2; vy.sin 8=(rd-r2)2; (A.10)
Solving the above equation for the rotation parameters gives

sin @=x(d/2); vi=1(r8-r6)d ; V2=2(r3-r7)d; v3=%(rd-r2)d;
where

d2=(r8-r62+(r3-r72+(r4-r2)2. (A.11b)
In order to fix 6, we need to define its cosine as

_fl=-vi2 _d2r1—(r8-r6)2
cos 0= LM = fL-CB-16)" (A.11c)

This representation is generally used in connection with the rigid-body motion of an

object.
A.2.2. The Second Representation

The rofation is also expressed in terms of the Euler angles : 6 ( roll or tilt ), ¢ (

yaw or swing ), and y ( pitch or pan ). Here, the rotation matrix R is given by, as shown
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by S. Ganapathy ( [27] ),
R =R, RoRy (A.12)

where Ry, represents a rotation of angle y around the z-axis in the camera co-ordinate
frame, R represents a rotation of angle 6 around the new x-axis, and R, represents the
rotation of angle ¢ around the new y-axis. This is one of the conventions used in this
research - the other conventions being the product of the three matrices in any manner.
These conventions do not necessarily give the same rotation matrix R as given by the
first convention used in this research because the product of the matrices, in general,

are not commutative. The three rotations are individually given as

cos ¥y siny 0
Ry=| -sinycosy O, —ntsy<+r ; (A.13a)
0 0 1
1 0 0
Re= |0 cos® sinb|, —x/2<0<+xn/2 (A.13b)

0 —-sin© cos 6

and

[ cos ¢ O sin ¢]

Re= 0 1 0 |, 0s¢<2m. - ' (A.13¢c)
[-—sinq;Ocosq>J

Here, the rotation parameters are the three Euler angles, and the elements

ri,r2,...r9 in the rotation matrix, expressed in terms of these angles are :

ri=cos ¢ cos y-sin ysin ¢ sin 0; (A.14a)
72=C0s ¢ sin y+cos ysin ¢sin 9; (A.14b)
r3=-cos 0sin ¢; (A.14c)

r4d=-sin ycos 0; (A.14d)
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rS=cos ycos 6; (A.14¢)
ré=sin 0 ; (A.14f)
r7=cos ysin ¢ +sin ysin 6 cos ¢; (A.149)
r8 =sin ysin ¢ —cos ysin 0cos ¢; | (A.14h)
r9=cos ¢ cos 0. (A.14i)

A.2.2.1. Computation of the rotation parameters

Solving for 6 from egn.(A.14d) through eqn.(A.14f), we get the cosine and the sine
of the angle in order to fix 6 as sin 6 alone does not determine 6 uniquely. Same pro-

cedure will be applied to other angles. Therefore,
sin 0=r6; cos 0=(r424r52)12, (A.15)
Similarly, solving for y from the same set of equations, we get

r4 _ r4 . —_TI5 _ rs .
cos § (1_r62)112’ cos Y= cos 0 (1_r62)j72, (A16)

sin y=—

Solving for ¢ from ean (A 14c) and egn (A 141}, we got

: - r3 - r3 . __ 19 _ ro .
S|n¢— cosS 0 (1_r62)l/2’ c°s¢— cos 0 (l_r62)]rzr (A17)

Special Cases : The similarity for the two approaches used so far can be found if
the arbitrary axis in the first case aligns with any of the three axis. The rotation matrix R
reduces to one of the rotation matrices for the respective axis. For example, if the arbi-
trary axis aligns with the x-axis, we have
vi=1l; v=0; v3=0

and
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R|v,=1 =Rs. (A.18a)
Other results are obvious for alignments of the arbitrary axis with y- and z-axes. Thus,
R|v,=1 =Ry (A.18b)
and

R |v,1 =Ry (A.18¢c)



APPENDIX B

ON THE SPATIAL DISTRIBUTION OF THE SURFACE POINTS
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in this Appendix, we shall investigate the number of conjugate pairs that are

needed for I and R to be unique factors of Q in chapter Il ( eqn.(3.8b) ), and state the

restrictions on the spatial distribution of the points on the surface of the object undergo-

ing rigid-body motion in order for the IPC algorithm to work satisfactorily. The various

developments presented in this Appendix are shown by Huang et al. ( [5] ).

Let r be transformed to r' with some reference rotation matrix R, and reference

translational vector T, , where

t,
Tf = ty’
tz,
Thus,
=R, r+T,.
Let
Qr = I", Rr
where
0 t -t
I', = - tz' 0 tx'
ty -t O

Therefore, eqn.(3.2a) becomes

where

(B.1)

(B.2)

(B.3a)

(B.3b)

~~
o)
£
&
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R,tQO RrtTRO

C=|rtQqol|=|T.tTR O (B.4b)

Note that if C is skew-symmetric, eq.(B.4a) is always satisfied, irrespective of what x, y,

z,orX, Y are.

Lemma : The necessary and sufficient conditions for C to be skew-symmetric is

that
R=R; (B.5a)
or
-1 00
R=U'| 0 -10|{UR,; (B.5b)
0 0 1

where U is a 3 x 3 orthonormal matrix such that

010 b b
r=U!'|[-100{U;Q=00Q and |ty |=a |t |; (B.6)
000 t; t,

where o is some constant. The proof for this lemma is given in [5].

We will now present a theorem to show that C has to be skew-symmetric if some

conditions on the surface points are satisfied.

Theorem : If

[ X'y 1] Q (B.7)

is satisfied by the image point correspondence of a group of object points satisfying the

following conditions :

(i) the group of points do not reside on two planes with one plane containing the
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origin and

(ii) the points are not traversed by a cone containing the origin,

then C in eqn.(B.4a) has to be skew-symmetric. The proof for this theorem is given in
i5].

We note that five or fewer points in space can always be traversed by two planes
with one plane containing the origin and that six or fewer points in space can always be
found to reside on the surface of a cone containing the origin. Thus a minimum of seven
points is needed to violate these conditions and ensure a unique solution for the motion

parameters, which follows from the theorem and the lemma.
The criterion for the existence of a cone containing the origin that passes through

‘n’ points is whether the following n x 7 matrix has full column rank or not :

X12 X1.Y1 Y12 X1 y1 21.x%; Z1.Y1
X22 X2.¥2 Y22 X2 Y2 22.X2 22.¥2

(B.8)

Xn 2 Xn.¥n Yn? X Yn Zn %0 25 .Y

However, we know the image coordinates instead of the 3D coordinates. The only use-
ful criterion available is whether the 8 x 8 matrix N in eqn.(3.3c) is non-singular or not,

assuming the correspondence of exactly eight points is known.
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APPENDIX C
PROOF FOR * THE FIRST METHOD '’

The proofs for eqns.(3.6a) and (3.6b) in chapter Il will be presented here. We will
verify eqn.(3.6c¢) first by writing

tz 2+ty2 "tx ty —tx tz
QQ‘=FR Rt 11=—IQ= -"tx ty t22+tx2 -’ty tz (C.1a)
"‘tx tz —tx tz tx2+ty2

1) 2 “1.'2)('1.'3)]
=1 (I, 1) 1122 (l2,03) . (C.1b)
(13, 11) (13,13) |||3||2J

Therefore,
2+t 2=| 1] 2; (C.2a)
2 2+t 2=| Io]| 2; (C.2b)
b2+t 2= I5]) 2; (C.2¢c)
(li,h2))==ty ty =(l2,1); (C.2d)
(I3, l1)==tx tz =(1y,13); (C.2e)
(L2, 13)==1t t =(13,1,); (C.2f)

Solving the above set of equations for t, ty , and t; we get the required solution for
the translational vector as shown in eqn.(3.6c) or eqn.(3.11) or eqn.(3.13) or eqn.(3.15).
This vector is estimated up to a scale factor because of the ratios of the essential

parameters.

We shall verify eqns.(3.6a,3.6b) now, as shown by Huang et al. ( see [5] ).
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Any skew-symmetric matrix I" can be expressed in the following normal form

0
r=qt [ -
0

OSSO
OO O

Q. (C.3)

If © =i.Q, where i = V=1, we have
e=¥%R; (C.4)

where ¥ = i.T" is hermitian. Eqn.(C.4) gives the polar decomposition of ©. We can see
that ' and R would be unique if the polar decomposition of the matrix @ with distinct
singular values is unique but in that case © has to be nonsingular. As it is seen, T is

singular and hence @ is singular, and

88 =¥2=-T2 (* denotes the conjugate operation )

¢ 0
=Qt | 0 ¢2
00

Q.

OO O

Therefore, the singular values of © are ¢, ¢ and 0 (repeated). However, because of a

special structure of T, once Q is given, I" and R are unique and is proved as below :

From previous equations, we see that

0 ¢0
Q=UAVi=TR=Qt | -4 00lQR.
0 00
Since
%200
Qal=rr=0'|{ 0 ¢* 0|02,
0 00
therefore, O is one of the singular vector matricas of G, namely, U. Therefore,



0 ¢0
Q=UAVI=U | -¢00|UtR.
0 00

Premultiplying by Ut gives

+

Pt

0
0

[

00
1 0|Vt=
0

1
0 0
0 0 0

(=N =N
c
=1

after canceling ¢ throughout. Again premuitiplying by

we obtain
0 ¥F1
1 0
00
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(C.5a)

(C.5b)

Eqn.(C.5b) shows that the first and second rows of the orthonormal matrix Ut R are the

same as the second and first rows of V respectively, except for a possible sign change.

This implies that the third row of U' R must equal the third fow of V up to a possible

sign difference. Therefore,

B

0
0
wherew=+1.

[y

ohko
soo

}V':U'R;

Taking determinants of both sides of eqn.(C.6), we have
o=det(U )/det(V).

Thus eqn.(C.6) gives

|-n

O
R=U | &1
0

SO
Q_._._.__l

(C.6)

(C.7)

(C.8)
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which proves eqn.(3.6a) and eqn.(3.6b). Although U and V are not unique, eqn.(C.8)

gives us only two possible solutions for R, and is proved below :

Let U, and V, be some singular vector matrices of Q. Also, let

010
Ri1=U; | -100 Vlt and
0 0
0-10
R2=U; |1 0 0]|V,;!.
00 @

Suppose U, and V, be any other singular vector matrices of Q and let

R3=U,

olo

10
00 Vztand
0w

p—

R4=U, 0
0

O = O

0
0|Vat.
o

We observe that eqn.(C.5a) must be maintained whether U equals U, and U,,
irrespective of R. If R3 and R4 are different from R1 and R2, contradiction arises if we

roniarad R hnw B2/ Ar BA A and 11 e B
SWPIALINS B Wy S ) W BT ) AW W W

y Ui since 8G.{C.8) says R musi be equal io Rt {or
R2 ) which is different from R3 ( or R4 ). Hence, we conclude that there are only two
possible solutions for R no matter what U and V are. The reason for two possible solu-

tions for R has been explained earlier.
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APPENDIX D
PROOF FOR ‘ THE SECOND METHOD ’

The proof for the transiational vector has already been established in Appendix C.
In this appendix, the proof for eqn.(3.12) in chapter Ill is presented. The proofs for

eqn.(3.14) and eqn.(3.16) are similar and will not be derived here.

We start with the definition of Q in eqn.(3.2d). It is seen that

(l2xI3)=(rity24rdt, ty +r7t t; W o+(r2t 2415, ty +r8t t; )j (D)

+(r3te 24164ty +19t, t; )k ;

wherei , ] andk are the unit vectors along x-, y- and z- axes respectively. The proper-

ties of the rotation matrix R from the Appendix A have been extensively used. Similarly

(laX b)) X by =[Frity (4 2+t 2)2rdte 2t 17, 2¢; )1 (D.2)
HIFr2t (ty 244, 2) 05t 28 £181 21, 1]

HIFr3t (ty 241, 2) k16t 2t 2191t 24, 1k .
Therefore, it can be shown that
(X I3)X IiFty (X I3)=F[r1 r2 r31t, (t 2+t 2414, 2)
or

- (Lxl3)x L1 Ft, (1, x I3)

P1 (F&IT12)

where || .|| 2 denotes the norm operation. Thus,w we complete the proof for eqn.(3.12a)
and egn.(3.12b). The proofs for eqn.(3.12c) through eqn.(3.12f) are trivial and will not

be discussed here.
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APPENDIX E
PROOF FOR ‘ THE THIRD METHOD ’

In this appendix, the proof for eqn.(3.21) in chapter Il, as shown by H. C. Longuet-

Higgins, is presented as follows :

From eqn.(3.20a), we observe that ¢ is orthogonal to h, and, therefore, can be

expressed as a linear combination of T and h, x T. Writing
Ca=TaT +NaWq (E.1)
and substituting in eqn.(3.20a), we get
he=TX (T +NeWg)=1na(T x Wy)=hg,
since ||T || 2 is unity. Thus,
Ne=1. (E.2)
From the following property of R ( Appendix A )
Cy=CpX Cy,
we get

T +Wo=(1T+Wg)x (4, T+Wy)=1hy—,hg+Wpx W,. (E.3)

In eqn.(E.3), the vectors W, , hy and h, are all orthogonal to T, whereas Wpx W,

is, by eqn.(3.20b), a multiple of T. Thus,
T« T=Wgx W, (E.4)

from which we deduce eqn.(3.21) by substituting eqn.(E.2) and eqn.(E.4) in eqgn.(E.1).
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APPENDIX F
In this appendix, the proofs for developments given in chapter IV are presented.
We shall first derive eqn.(4.2).
For transformation of F; to S, let F} coincide with S. In that case
Rij=Ri, Ty=Ti, ry=r, Rj=l=0;!. (F.1)
Substituting eqn.(F.1) in eqn.(4.1) gives eqn.(4.2a).
Similarly, let F; be S, where

R;j=RIt, Tij=-RjtTj, rj=r, (F.2)

o t'=1=R;.
Substituting of eqn.(F.2) in eqn.(4.1) results in eqn.(4.2b).
Eliminating r from eqn.(4.2a) and eqn.(4.2b), we have
Qiri=®R R'ri+® (T -RR'T)). (F.3)
Comparison of the eqn.(F.3) with eqn.(4.1) gives eqns.(4.6a) and (4.6b).
The derivation of eqn.(4.7) is as follows :

The 2-D image co-ordinates of rj; and rj; are not observed on the image plane,
because of the manner in which the pictures are taken. So, eliminating ry from

eqns.(4.4) and (4.5a) yields

O (Rir+Ti)=®R;r;+Ty. (F.4a)
Eiimination of ' from eqns.(4.3) and (F.4a) gives

¢i(R|Rr+RiT+T])=¢iRH rp+Ty. (F.4b)

Furthermore, elimination of r from eqns.(4.2a) and (F.4b) yields the desired relationship

between r; and r; as shown in eqn.(4.7).



If F; coincides with S, we have

ri=r, Ri=l=q¢;!, T,=0, Tu=—RijT]=—RItT].

Substituting egn.(F.5) into eqn.(4.7), we get eqn.(4.8).

We shall now derive eqns.(4.14a,4.14b,4.14c).
The camera moves first in this case, so that
Qri=0 R;ri+Ty .
Then the object moves, so that

"=Rr+T.
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(F.5)

(F.6a)

(F.eb)

From eqns.(F.6a,F.6b,4.2b,4.3, and 4.5b), the relationship between r jj and r; can be

found to be the one expressed in eqns.(4.14a,4.14b,4.14c).
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APPENDIX G
SOFTWARE FOR THE IPC AND GIPC ALGORITHMS

In this Appendix, the details of the programs for the three methods for the IPC and
the GIPC algorithms are presented. The software for the three methods was developed
so as to complete an extensive literature survey on the existing techniques for the IPC
algorithms. In addition to that, two different representations of the rotation matrix, as
shown in Appendix A, have been used. Different cases have been taken where the
number of available features equals, and exceeds eight. The input to the software was
either simulated or the real-time data. The software was written for each case, and kept
in a different file. A main program acceses each file. There are, therefore, twenty four
cases. Another main program for testing the GIPC algorithm has been dealt with simi-

larly. The outlines of these programs are shown in Fig.25 and Fig.26.

File ipc.c is the main user-friendly program for estimating 3-D motion parameters
using the IPC algorithm. The two pictures, required for the aigorithm, are taken by a sta-
tionary camera. Its executable file is ipc. The notations used for the twenty four cases

are given as follows :
S: Simulated data (in test_coord); D: Real data (in nasa_data);
I, Il, Il : The first, second and third methods respectively for the IPC algorithm;
A : First representation of R; B : Second representation of R.
N :n> 8; M:n=8;where 'n’is the number of data-points used.

The options available, with a separate program for each option and kept in a

separate file, are given as follows :
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Options available ( File names containing the software ) :

0:SIAN(progl.c); 9:S Il AM (progllla.c); 18 : D Il B N (progli_e.c);
1:S1AM(progla.c); 10:S Il BN (proglll_e.c); 19:D Il B M (proglia_e.c);
2:S1B N (progl_e.c); 11:S i B M (proglila_e.c); 20:D lil A N (proglli.c);
3:S1BM(progla_e.c); 12:DIAN(progl.c); 21:D Ill AM (proglila.c);
4:SIAN (progll.c); 13:DIAM(proglac), 22:D IlI B N (proglll_e.c);
5:8 1 AM(progliac); 14:DIB N (progl_e.c); 23:D Il B M (progllia_e.c);
6:S 11BN (proglli_e.c); 15:D 1B M(progla_e.c); 24:quit.

7 :S 11 B M(progila_e.c); 16 : D It A N (progll.c);

8 :S I AN (proglil.c); 17 : D It A M (proglia.c);

The options are kept in a separate file called ipc_cases.

File gipc.c is another user-friendly main program for estimating 3-D motion param-
eters using the GIPC algorithm. The two pictures required for the algorithm are taken by

a moving camera. Its executable file is gipc.

As before, all different cases are considered. The options available are given as

follows :
Options available ( File names containing the software ) :
0:SI1AN(gipcl.c); 9:S Il AM(gipclila.c); 18:D Il B N (gipc!l_e.c);
1:S1AM(gipcla.c); 10:S Il B N (gipclli_e.c); 19:DIIBM (gipclla_e.c);
2:S1BN(gipcl_e.c); 11:S 1l BM(gipclila_e.c); 20 : D lit AN (gipciil.c);
3:S1BM(gipcla_e.c); 12:DIAN(gipclc); 21:DIIAM (gipclila.c);

4:SILAN (gipcll.c); 13:D 1 AM(gipclac);, 22:D 1l BN (gipclll_e.c);



107

5:S1IAM(gipcllac); 14 :D 1B N (gipcl_e.c); 23:D lil B M (gipcllla_e.c);
6:S 11BN (gipcll_e.c); 15:D 1B M (gipcla_e.c); 24 : quit.
7 :S 1B M(gipclla_e.c); 16 :D Il A N (gipcll.c);

8 :S Il AN (gipcill.c); 17 : D Il A M (gipclia.c);

The options are kept in a separate file called gipc cases. The files containing the
software for various options have not been included in this appendix because they are

voluminous.



/0..'.Q.n........C.Qtﬂ't.......ttt...........t....‘.!.l..ltt........../

/* POINT CORRESPONDENCE ALGORITHM : All the Methods LY}
/t.l.‘..t....!............t...l!t..l.....‘....Q...‘..l.ll............./
/*  Author:Sunil Fotedar Y
/* Co-author : Dr. Rui J. p. de Figueiredo o/
/* Electrical & Computer Engineering Department s/
/14 Rice University, Houston ./
/Qn.'ntn...ﬁn........l.tl.......Q.'l...tlt!..l....it...‘!‘.'.t.t.‘..t.’
/* This i{s the main program for estimating 3-D motion parameters 7
L

/* using the “Image Point Correspondence™ method.
/.!.t..ﬁt't....l...!..i“...tl...t..'...tlt..‘..tt..i.!i.!.‘li...‘...i/

/* FILE NAME : ipc.c e/
/!.Q.t.’.t.ttt....Q.tt....Q.Q.....Q..lt.l..tt!tt'!..tl....t.‘Qt!t.....,
finclude <stdio.h>
finclude <math.h>
finclude "sunil.h*"

main{()
{
int i,j.points,data;
double x([Max) +y[Max], z (Max],
xr{Max),yr(Max}, zr(Max],
R{3](3),
T3},
a,b,c, theta,phi,psi,pi;

FILE +*fp;
pi={.C*atan(i.0);
printf(”\n\n\t\t\tTHE DEMONSTRATION OF THE IPC ALGORITHM\n\n") ;
princf("\n\nSpecify the type of data ( S or D ), the number of\n");

princf(“method ( I, II or III ) the representation for the rotation\n®)
printf("matrix ( A or B )}, and the number of points used (N or M ) :*)

printf(“\n\nS : Simulated data (in test coord); D : Real-time data (in nasa_data):=);

printf("\nl, II, IIY : The three methods for the IPC algorithm;=);
printf ("\nA rotation around an arbitrary axis; B : Euler angles;*);

Printf(“\nN : n > 8: M : n = 8; where ‘n’ is the number of data-points used.”);

printi("\n\nCpticns avallable :");

Printf("\n\n0 : $§ I A N"); printf("\t8 : s 111 A N");printf("\tl6 : D II A N\n");
printf("1 : S I A M"); printf("\t9 : S III A M"): printf("\tl17 : D II A M\n");
printf("2 : s I B N"); printf("\t10 : § 11T B N*):printf(=\tl8 : D II B N\n"):
Printf(“3 : s 1 B M~); printf("\tll : s 111 B M”);printf("\tl19 : D 1T p M\n®);
printf("¢ : S II A N*) sprintf("\t12 : D 1 A N") ;printf("\t20 : D 11T A N\n");
printf(™5 : § IT A M");printf("\t13 : D I A H™);print€(~\t21 : D III A M\n");
printf(™6 : s IT B N");printf("\t14 : DI B N"):printf("\t22 : p 11T B N\n");
printf("?7 : s 11 B M%) ;printf("\tlS5 : DI B M");printf("\t23 : b III B M\n");

printf("24 : quit\n");

printf("\nEnter option number :\n");
scanf ("¢d”, ¢data );

switch(data) {

tinclude "ipc_cases*”

}

/!Q!....Qﬁit.t't.t!...tili.iit..'t'ttt...!.t'i...‘l.......t....'tﬂt.../

Fig.25 : Computer Program for the IPC Algorithm,
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,....I.l....(.i............Q......‘.li.l.llt.........-.....0..‘....‘.n,

/* GENERALIZED IMAGE POINT CORRESPONDENCE ALGORITHM : All the Methods*/

/....i.‘....t‘..“‘.!ni..l.‘ﬁt..!......lt..t."..‘l.‘.!ﬂ.C....QQ.‘....’

/* Author: Sunil Fotedar «/
/*  Co-author : Dr. Rui J. P. de Figueiredo o
/* Electrical & Computer Engineering Department ./
/* Rice University, Houston .

I.........'..!Q.ﬁ........'...t'.‘...t'...‘..Q...'.'QQ......Q.Q!......Q/
/* This is the main program for estimating 3-D motion parameters */
/* using the "Generalized Image Point Correspondence”™ method. ./
,!t‘....t.......!.....Q.tit..t.l...Q.t!....Q....l..'.!.“.....nl‘...../
/* FILE NAME : gipc.c Y]

/Ql..lt!.......ll..Q.!t.‘t..l.t'.tt.ttt.t.‘t..l..l0‘..0....‘.0....‘.../

finclude <stdio.h>
f#include <math.h>
¢include “"sunil.h"

main ()
{

int i, j.points,data;

double x(Max],y(Max],z(Max],
xr {Max],yr(Max), zr (Max],
R(3](3),
T(3),
thetll,phll,psll,chetaz,phiz,p:iz,
R12(3l(31aR1(3](31:R_te=(3)(3l.
a,b,c,theta,phi,psi,pi;

FILE +*fp;
pi = 4.0 * atan(1.0);
printf ("\n\n\t\t\tTHE DEMONSTRATION OF THE GIPC ALGORITHM\n\n") ;

orintf ("\nEnter the values for the Euler angles (thetal,phil, & psii\n");

printf("for R12, and theta2,phi2,s psi2 for R1), then hit ‘Return’ key.\n");

printf("R12 is the frame transformation matrix between the frames Fl\n*)
printf("and F2. Similarly, Rl is between F1 and the standard frame S$.\n"

scanf("sf Sf €f &f §f \f',&thetnl,Sphil,cpsil,cthetgz.iphiz,&p3123:

rot_matlII(&thetal,&phil,cpsil,R12);
rot_matIX(stheta2, tphi2,tpsi2, Rl ):

pPrintf (“\n\nSpecify the type of data ( S or D ), the number of\n");
printf("method ( I, ¥I or III ) the representation for the rotation\n*);
printf("matrix ( A or B ), and the number of points used ( N or M ) ")

printf("\n\nS : Simulated data (in test_coord); D : Real-time data (in nasa_data):"};

printf("\nI, II, III : The three methods for the IPC algorithm: ") ;
Printf{~\nA : rotation around an arbitrary axis; B : Euler angles;*);

printf ("\nN ; n>8:M:ne=8;: wicie ‘n’ is the number of data-points used.");

printf("\n\nOptions available :™):

printf("\n\n0 : § I A N"); printf£("™\t8 : S III A N®):printf("\t16 : D IT A N\n");
printf(”™1 : S I A M), printf(~\t9 : s 111 A M%) ; printf("\tl? : D II A M\n"):
Printf("2 : S I B N"): printf(~\t1o0 : S III B N"):printf("\tl18 : D II B N\n"):
Printf("3 : S I B M");: nrincésoiery . S III 5 #”j;printf(“\tiy : D XI B M\n"};
printf("4 : S II A N");printf("\tl2 : D I A N");print£(*\t20 : D III A N\n*");
printf(™5 : S II A M");printf("\t13 : D I A M*);printf("\t21 : D III A M\n");
printf(“6 : s II B N"):printf("\tl4 : DI B N");printf("\t22 : p 111 B N\n");
printf ("7 : $ 1II B M");printf("\tl5 : DI B M%) ;printf(*\t23 : D I1I B M\n");

printf("24 : quit\n");
Printf("\nEnter option number :\n"):;
scanf ("%d", sdata );
switch(data) (
#include “gipc_cases”
}

laﬂﬂ!l.ﬁl..l.l!diiiin!!'...!.t..‘..Ct...‘.'ﬁ..‘...........l...l...l.‘-/

Fig.26 : Computer Program for the GIPC Algorithm.
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