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ABSTRACT

An Image Point Correspondence (IPC) algorithm enables the determination of 3-D motion parameters of an
object from its image sequences. This method is currently being explored for various robotic vision applica-
tions, especially those involving motion of video as well as the object under observation. In this paper the
sources of error in the motion estimation of objects/scenes are reviewed. The estimate of the error in the de-
termined parameters is developed using a mathematical formulation. Errors in the output are plotted experi-
mentally as a function of the errors in the input.

1   INTRODUCTION

Computation of 3-D motion parameters of a moving object from its image-sequences is an important research
area in motion analysis. Motion analysis finds widespread application in robotics and automation, military,
space, weather forecasting, medicine, traffic monitoring, segmentation and scene analysis.  In the IPC algo-
rithm, 2-D images of a moving object are taken by a camera over an interval of time [1,2,3,4]. The features of
the moving object and the correspondence of these features from one image to another are assumed to be
known. In addition, the object is assumed to undergo a rigid-body motion, which means that the object does
not deform over time. The features can be a set of surface points on the object, its edges, vertices, line seg-
ments, 2-D moments and moment invariants of its surfaces, or its surface properties like shading characteris-
tics. The 3-D motion parameters to be computed are its attitude, attitude rate, visible surface shape,
identification/recognition, and track. 

The accuracy of the IPC algorithm depends on the availability of measured parameters. Errors in these input
parameters/data result in errors in the estimated motion parameters [5]. Input errors also include the fact that
the object has deformed over time. Therefore, the error propagation for various stages of the IPC algorithm will
be described in terms of the error bounds.

A background of the IPC algorithm will be given in section 2 . There are various sources of error which are
discussed in section 3.1. Definitions of error, relative error and error bounds, along with the error in simulta-
neous equations will be presented in section 3.2.

2   THE IPC ALGORITHM

In this section, we provide a background of the IPC algorithm as applied to the two-view motion analysis case
exclusively. For details the reader is referred to [1]. We consider in detail the equations that track a single point
P on a moving object by a moving camera at two different instants of time τi and τj (where τj > τi ) respectively.
The point P moves from one position P i to another position P j  due to the rigid-body motion of the object. We
assume (R, T) to be the transformation parameters, rotation matrix and translational vector, respectively. Var-
ious steps for the formulation of the IPC algorithm are presented in the following discussion:

Step I:  The desired relationship between the coordinates of the initial and the final positions of the point P re-



corded by the camera is given by the following motion analysis equation:

pj = R  pi + T (1a)

such that

pi = ( xi, yi, zi )
T  represents 3-D coordinates of Pi

pj = ( xj, yj, zj )
T  represents 3-D coordinates of P j  

       

                             

    and 

        (1b,c)

where  rαβ  (α, β = 1,2,3) are the rotational elements and tα  (α = 1,2,3) the translations along x-, y-, and z-axes
respectively.

Step II:  Define

         

(2a)

where Q, the matrix containing essential elements, is found from the following homogeneous equation:

vj
T Q vi = 0 (2b)

where transformations from  3-D object-space coordinates of Pi and Pj to 2-D image coordinates vi  and vj  us-
ing perspective projections are respectively

vi = (Xi , Yi, 1 )T = f pi/z i  ;vj = (Xj , Yj, 1 )T= f pj/zj (2c,d)

The focal length f of the camera lens is normalized to 1 without any loss of generality. The homogeneous equa-
tion in Eq. (2b) is solved for Q from the following set of equations:

(2e)

where Q has been formed into an 8 x 1 column vector and each element has been divided by q33.
In addition

(2f)

(2g)
where  ( Xα , Yα ) are 2-D image coordinates for the αth data point. 

Step III: If the singular value decomposition of Q is defined as

(3a)



where  U and V are orthogonal matrices and      is a diagonal matrix containing the singular values of Q.  There
are two solutions for the rotation matrix, R and R', given by

(3b)

and 

(3c)

where ω = det(U)/det(V) =     1. One of the rotation matrices corresponds to the motion of the object on the
same side of the camera (either front or back) and the one to the motion from either front to the back or vice
versa. We reject the second solution for the rotation matrix corresponding to a situation not encountered in prac-
tice.

Also, the translational elements ( α = 1, 2, 3) up to a scale factor, in terms of essential elements, are given as [2]:

(3d)

where α is cyclic, i.e.  α4 = α1.

3    ERROR ANALYSIS

3.1  SOURCES OF ERROR

Since the IPC algorithm can be implemented using a sequence of object images, any error in the input data
and sensor parameters becomes a source of inaccuracy in the output data.  The input data is the set of feature
coordinates of the object, and the output data are the 3-D motion parameters. The perturbation errors  [5] are
due to: (i) spurious noise in the sensor and its display, (ii) defocussing, (iii) limited resolution of the camera, (iv)
motion blur, (v) thermal instability of light sources, (vi) optical system aberrations, (vii) diffraction effects, (viii)
stray light, and (xi) optical properties of the medium.

3.2   DEFINITIONS

The following definition are taken from [6].

3.2.1   ERROR AND RELATIVE ERROR

If N is true value of any parameter and      is its approximation, then

Error, E = True Value - Approximation = N - (4a)

and 

Relative Error, RE = (4b)



3.2.2   ERROR BOUNDS

When any function f(N) with a continuous derivative is evaluated with N replaced by   , the relation

f(N) - f(     ) = f'(η)(N -     );    (5a)

gives us 

(5b,c)

The maximum error in the product P (where P = N1N2 ) is found to be

RE(P) = (5d)

i.e.

RE(P) = RE1 + RE2 - RE1RE2 (5e)

where RE(P) refers to P, RE1 to N1, and RE2 to N2.                  is largest  when RE1 and RE2 are negative.
Thus, generally if P = N1N2...Nm,

RE(P) = 1 - [(1-RE1)(1-RE 2)...(1-REm)]

3.2.3   ERRORS IN SIMULTANEOUS EQUATIONS

In order to investigate errors, we suppose that the set actually solved is

(6a)

whereas the true values of the coefficients are aαβ + δaαβ, and the true values of the right-hand members are
cα + δcα. If the true values of the unknowns are denoted by xα + δxα, we see that

(6b)

assuming the products of errors, of the form (δaαβ)(δxβ), to be relatively negligible. Thus, if the errors δaαβ
and δcα were known, the solution errors δxα would be obtained by solving a set of equations which differs from
the set actually solved in that the right-hand member cα is to be replaced by ηα where

ηα = δcα - ( x1δaα1 + ... + xnδaαn ) (6c)



In practice, the errors δaαβ and δcα do not exceed a certain positive number ε in magnitude, so that

. In such cases, we are certain only that

(7a)

where

(7b)

Therefore,

(7c)

and

(7d)

where    (α = 1,2,...,n) are the elements of the γth row of the inverse of the coefficient matrix. Thus, if the inverse
matrix is calculated, approximate upper bounds on the effects of input errors are obtained from the above
equation. They are not strictly upper bounds. However, they may be accepted as close approximations to true
upper bounds. 

3.3   ERROR PROPAGATION IN THE IPC ALGORITHM

In this section, we shall analyze the effect of changes in the input parameters on the output parameters for the
IPC algorithm.  Since various steps are involved in this algorithm, the propagation of the error will be studied
and the error bounds found for each stage of the algorithm (Fig. 1). The two representations of the rotation matrix
will also be considered (see Appendix). First, the reader will be given the background of the IPC algorithm.

3.3.1   ERROR IN ESSENTIAL ELEMENTS

The sensitivity of the essential elements  (elements of a matrix Q) to the error in input set of   
2-D image coordinates of the features will be studied in this section.  

The equation solved is

(8a)

where                                                                   and the true equation to be solved is given by Eq. (2e). Let

(8b)

where

(8c)

It follows from [6] that

(8d)



where the products of errors are neglected, and ( Xα , Yα ) are 2-D image coordinates for the αth data point.

Case I:  If N is square ( i.e. n = 8 ) and non-singular,

(8e)

where

(8f)

Therefore,

(8g)

where    are the elements of N-1.

Case II:  If N is not a square matrix, we define a residual matrix by

(8h)

where  N+  and       are the pseudo-inverses of N and        respectively.  Then from [7]:

(8i)

where

(8j)

3.3.2   ERROR IN ROTATIONAL ELEMENTS

The propagation of error in rotational elements due to error in essential elements is investigated in this section. 

If the singular value decomposition of       , defined as

(9a)

is an approximation to the true value

(9b)

where                            are the error matrices, then the αth  singular vector      of the perturbed matrix    , in
terms of the αth singular vector uα of the matrix Q, can be approximated by the
first-order Taylor Series expansion and is given by [8]:

(9c)



Therefore,

(9d)

where                      are the entries of the matrices Q and       respectively. The derivatives of the singular
vectors  ( for κ = 1, 2, ..., 9 ) are:

(9e)
        

 (9f)

where σαα (α = 1, 2, 3) are the singular values of Q. The error bounds for elements of V have not been com-
puted in this paper.

After finding error bounds for U and V, we are in a position to find the same for the rotational elements, which
are given by the following equations:

(9g)

where uαβ, σαβ, and vαβ are the entries of U,     , and V respectively; 

and  has been assumed.
      
3.3.3   ERROR IN TRANSLATIONAL VECTOR

The translational elements (α = 1, 2, 3), in terms of essential elements, are given in Eq. (3d). The error bounds
for these elements are given as:

(10a)

for                                        ( γ, κ = 1, 2, 3 ) because



(10b)

3.3.4   ERROR IN 3-D MOTION PARAMETERS
  
In this section, the errors in the motion parameters, due to errors in rotational elements, are studied separately
for two representations of rotation matrix R [1,3,4, and Appendix].

3.3.4.1  USING FIRST REPRESENTATION OF ROTATION MATRIX

From the definitions of the directional cosines of an arbitrary axis, and the angle of rotation around this axis in
Appendix using the first representation of R [1,4],  the error bounds are found to be:

      

and    
 

(11a,b)

for  -  . A general expression for the partial derivatives are:

(11c)
and

(11d)

3.3.4.2  USING SECOND REPRESENTATION OF ROTATION MATRIX
     

The second representation  of the rotation matrix R is presented in Appendix [3,4]. The error bounds in this case
are:

(12a)



(12b)

(12c)

where

(12d)

(12e)

(12f)

4   EXPERIMENTAL RESULTS

In this section, we present experimental results for the IPC algorithm tested successfully on real data.  The
various error plots will also be discussed.  These plots indicate the relationship between the errors in the input
set of data (coordinates of the features) and the errors in the output data (motion parameters).

There are difficulties in determining constants in various inequalities appearing in the error bounds of the pre-
ceding section. Therefore, we obtained error estimates experimentally.  This was done by perturbing the data
and measuring the corresponding errors in the parameters calculated by our algorithms.  These errors are
sample errors rather than averaged ones.

The error plots for previous experiments are shown in Fig. 2 and Fig. 3.  In these plots, the x-axis represents
the magnitude of the percent relative errors in the input set of coordinates, and the y-axis indicates the corre-
sponding magnitude of percent relative errors in the motion parameters.  A brief discussion of these plots fol-
lows:

In the plots of Fig. 2, (aI, bI, thI )  represent the error curves for the motion parameters (directional cosines of
an arbitrary axis and the angle of rotation around this axis) where first representation of R is used.  The refer-
ence motion parameters were:  υ1 = 0.1, υ2 = 0.2, θ = 12o; and t1 = t2 = t3 = 1.0. Similarly, the plots in Fig. 3
(rI, yI, pI )  represent the error curves for the motion parameters  (roll, yaw, and pitch) where second represen-
tation of R is used. The reference motion parameters were :  Roll = 11o,  Yaw = 12o, Pitch = 13o; and  t1  = 1,
t2  =  2, and t3  =  3. 

5   CONCLUSIONS

In this paper, the expressions for error bounds were derived for various stages of the IPC algorithm. The per-
turbed set of coordinates were experimentally fed as the input to the IPC algorithm, and the errors in the output
set of motion parameters were examined in terms of various plots with percentage of modulus of relative errors
in input set of coordinates versus percentage of modulus of relative errors in the motion parameters. From
these plots, and various others, we have found that a telescopic increase in the output errors is due to the IPC



algorithm assuming rigid-body motion of an object. Error in the input set of coordinates results from the fact
that the object has deformed over a period of time.
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APPENDIX

THE ROTATION MATRIX

In this appendix, the description and the properties of the rotation matrix R, and the computation of rotation
parameters from it  has been presented [1,3,4].

Let

R

   (A.1)

where rα (α = 1,2,3) is the αth row of R, cα (α = 1,2,3) its αth column, and rαβ (α,β = 1,2,3) are its elements.

A.1  THE PROPERTIES OF ROTATION MATRIX R

The rotation matrix R is a 3x3 orthonormal matrix (i.e., R -1 = RT) of the first kind (i.e., det(R) = +1). Its property



that the determinant must be unity implies the following constraints:

(A.2a)

r1  =  r2  X  r3 ;r2  =  r3  X  r1 ;r3   =  r1  X  r2 (A.2b)

r1 . r2  =  r2 . r3  =  r3 . r1  =  0 (A.2c)

Also,

(A.2d)

c1  =  c2  X  c3 ;c2  =  c3  X  c1 ;c3   =  c1  X  c2 (A.2e)

c1 . c2  =  c2 . c3  =  c3 . c1  =  0 (A.2f)

The equations (A.2a) through (A.2f) can be written as

r11
2 + r12

2 + r13
2  =  r21

2 + r22
2 + r23

2  =  r31
2 + r32

2 + r33
2 = 1

r11
2 + r21

2 + r31
2  =  r12

2 + r22
2 + r32

2  =  r13
2 + r32

2 + r33
2 = 1

r11 = r22 r33 - r23 r32 ;r12 = r23 r31 - r21 r33 ;r13 = r21 r32 - r22 r31;

r21 = r32 r13 - r12 r33 ;r22 = r11 r33 - r13 r31 ;r23 = r12 r31 - r11 r32;

r31 = r12 r23 - r13 r22 ;r32 = r13 r21 - r11 r23 ;r33 = r11 r22 - r12 r21;

r11 r21 + r12 r22 + r13 r23 = r21 r31 + r22 r32 + r23 r33 = r31 r11 + r32 r12 + r33 r13 = 0

and

r11 r12 + r21 r22 + r31 r32 = r12 r13 + r22 r23 + r32 r33 = r13 r11 + r23 r21 + r33 r31 = 0

All of these equations are not independent. Their interdependence can be recognized from the following iden-
tity:

( r11 r21 + r12 r22 + r13 r23 )2  =  ( r11
2 + r12

2 + r13
2)(r21

2 + r22
2 + r23

2) - (r11 r22 - r12 r21)2  - (r12 r23 - r13 r22)2 - (r13

r21 - r11 r23)
2 

A.2   THE TWO REPRESENTATIONS OF ROTATION MATRIX R

The rotation matrix R, used extensively in the motion analysis, can be expressed in either of the two represen-
tations explained in what follows:

A.2.1  THE FIRST REPRESENTATION

The rotation of an object by an angle θ around an axis, passing through the origin of the frame with which the
camera coordinate system aligns, with directional cosines ν1, ν2, ν3, is expressed as a rotation matrix R [1,4],
where



(A.3)

with the additional constraint:

ν1
2 + ν2

2 + ν3
2  =  1

A.2.1  THE SECOND REPRESENTATION

The rotation is also expressed in terms of the Euler angles: θ (roll or tilt), φ (yaw or swing), ψ (pitch or pan). Here
the rotation matrix R is given by [3,4]:

R = Rφ Rθ Rψ (A.4a)

where Rψ represents a rotation of angle ψ around the z-axis in the camera coordinate frame, Rθ represents a
rotation of angle θ around the new x-axis, and Rφ represents the rotation of angle φ around the new y-axis.
This is one of the several conventions used in this paper - the other conventions being the product of the three
matrices in any order. These conventions do not yield the same rotation matrix R, simply because the product
of the matrices are non-commutative. The three rotation matrices are:

(A.4b)

(A.4c)

and

(A.4d)

The rotational elements in this case are:

r11 = cos φ cos ψ - sin ψ sin φ sin θ

r12 = cos  φ sin ψ + cos ψ sin φ sin θ

r13 = - cos θ sin φ

r21 = - sin ψ cos θ

r22 = cos ψ cos θ



r23 = sin θ

r31 = cos ψ sin φ + sin ψ sin θ cos φ

r32 = sin ψ sin φ - cos ψ sin θ cos φ

r33 = cos φ cos θ

A.3    COMPUTATION OF 3-D MOTION PARAMETERS

A.3.1  ATTITUDE

Using first representation of R, we see that

 (α = 1,2,3; α is cyclic) (A.5a)

(A.5b)

where

(A.5c)

If second representation of R is used, we see that 

(A.5d)

(A.5e)

and

(A.5f)

A.3.2  ATTITUDE RATES

The interframe attitude rates  between the two frames F i and Fi+l  at instants τi and τi+1 are given as:  

angular velocity of rotation, ωθ = (θi+1 - θi)/∆τ  (A.6a)

if the first representation of R is used.  If the second representation of R is used, then

roll rate,   ωθ = (θi+1 - θi)/∆τ  (A.6b)

yaw rate,  ωφ = (φi+1 - φi)/∆τ                                                                            (A.6c)



pitch rate, ωψ = (ψi+1 - ψi)/∆τ  (A.6d)

In Eqs. (A.6a,b,c,d),

∆τ = τ i+1 - τi  (A.6e)

Fig. 1. Error analysis for various stages of the IPC algorithm.

Fig. 2 and Fig. 3 for error plots not available. See Robotics and Expert Systems, Vol. 4, Proceedings
of ROBEXS '89, The Fourth Annual Workshop on Robotics and Expert Systems, Hyatt Rickeys Ho-
tel, Palo Alto, California, August 2-4, 1989, pp. 140-141.
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