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A Generalized Image Point Correspondence (GIPC) agorithm, which enables the determination of
3-D motion parameters of an object in a configuration where both the object and the cameraare moving, isdis-
cussed. A detailed error analysis of these algorithms has been carried out. Furthermore, this algorithm was test-
ed on both simulated and video-acquired data, and its accuracy was determined.

1. INTRODUCTION

Motion-analysis, based on robotic vision, has widely been discussed in the literature [1,2,3,4,5] in devel oping the
Image Point Correspondence (1PC) algorithm. Methods used are: Two-view motion-analysis or monocular vision, ste-
reo or binocular vision, and stereo motion. However, the IPC algorithm has not been applied to the more general prob-
lem of motion-analysisinvolving asituation where both the object and the cameraare moving [4]. Industrial and space
robots face this situation in locating and tracking of various objects/scenes when both the camera/video system and the
object move asynchronously. In the GIPC, a generalization of the IPC agorithm, this problem of motion-analysisis
discussed. The three methods of motion-analysis mentioned before become special cases of the GIPC presented in this
paper.

The accuracy of the IPC/GIPC algorithms depends on the availability and errorsin the measured input parameters.
Input errors also include the deformation of the object over time. The error propagation for various stages of the IPC
will, therefore, be described in terms of the error bounds.

2. THE GENERALIZED IMAGE POINT CORRESPONDENCE ALGORITHM
2.1. The Algorithm

The general case of motion-analysisisillustrated in Fig. 1. For simplicity in presentation, the equations that track
asingle point P on amoving object by a moving camera are considered. F; and F;j are the two frames with which the

camera coordinate system coincides at two different instants of timet; and tj (tj > ) respectively. Point P moves from
one position Pj to another position Pj due to the rigid-body motion of the object. We assume (R, Ti) and (Rj, Tj) to be
the transformation parameters (rotation and translation) that link the frames Fj and Fj respectively with the standard
frame S. Also, let (Rij, Tij) bethe transformation parameters that link the frame Fj with the frame Fj. The object moves
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with the unknown motion parameters (R, T). The image plane is assumed to be at the focal point of the camerawith
its X- and Y -axes parallel to those of the camera coordinate system, where z-axis is the line of sight.
The desired relationship between the coordinates of theinitial and the final positions of point P (Pj and Pj respec-

tively) recorded by the camera, with respect to the frames F; and Fj respectively, isgiven by the following equation [4]:
pjj = Rij" pii + Tij’ (219)
where pap = (Xab,Yab: Zab) | isthe vector of 3-D coordinates of P relative to Ry at instant ty (@a,b=i}),and

Rj' =Rj" R RRT =R RRT and Tj' =-R RRT T{+R

i i j j T+

j j
(2.1b,0)

Eq. (2.1a) givesthe expression for the generalized version of the motion-analysis equation. Clearly, it does

not matter whether the object or the cameraismoved first. Rand T, the desired parameters to be estimated, are defined
as:

a1 iz T ' (2.1d,e)

where ryp (a, b =1,23) arethe rotational elementsandt, (a = 1,2,3) the translations along x-, y-, and z-axes re-
spectively.

Special Cases: If F; is standard frame S, the motion equation can be written as

R;i'

j :RijT R:Rj R and Tij': RJ'T +Tj (2.2a,b)

The IPC agorithm can be used to estimate the motion parameters (Rij',Tij') and hence (R, T) of the moving
object, assuming Rjj and Tj; are known.
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Fig. 1.Geometry illustrating GIPC Algorithm.



2.1.1. Monocular Vision: Inthe case of the two-view motion-analysis equation, the location of the camera, taking the
pictures of the moving object, isfixed. In that case,

Ri:Rj :Rij:| and Ti :Tj:O (2.2C,d)

j
The generalized motion-equation, using Egs. (2.2a,b) and (2.2c,d), reduces to
pj =Rpji +T

or to the more familiar two-view motion egquation

pP'=Rp+T

asthe frames K, and Fj coincide with the frame S, such that p;; = p;=p and pj =P} = p', where p; = (X;, Y, zi)T and
pj = (i, Yjs zj)T are 3-D coordinates of P; and ﬂ relative to S respectively.

2.1.2. Sereo Vision/Stereo Motion: For a stereo vision/stereo motion case, the object is assumed to be stationary. In
that case,

R=I; Rj=R; ad T=0 (2.2e/f)

and the generalized motion-analysis equation, using Egs. (2.2a,b) and (2.2ef), reduces to
pI = RJ p+ T]

These cases of motion-analysis have been found to be equivalent [1]. The motion of point P; to point PJ- with
respect to a fixed frame Fj is similar to the motion of frame FJ to frame F; with respect to afixed point P.

3. ERRORANALYSIS

Since the IPC/GIPC algorithms can be implemented using a sequence of object images, any error in the input
data and sensor parameters becomes a source of inaccuracy in the output data. The input data is the set of feature co-
ordinates of the object, and the output data are the 3-D motion parameters. The sources of perturbation errors have
been identified in [6,7] .

Inthissection, we shall analyzethe effect of changesin theinput parameters on the output parametersfor thethree
different methods for the IPC/GIPC algorithm [1,2,3,4]. The two representations of the rotation matrix will also be
considered [2,4,8].

Since various steps are involved in this algorithm, the propagation of the error will be studied and the error bounds
found for each stage of the algorithm (Fig. 2) [7,9].

3.1. Error in Essential Elements
The sensitivity of theessential elements (elements of amatrix Q) to theerror ininput set of 2-D image coordinates

of the features, common to the three methods, will be studied in this section. By definition, matrix Q isrepresented in
terms of rotational and translational elements as[2,4]:

Ty 112 144 t31121"(21131 tarzz'tzraz tﬁfza_tzraa
0= [Ty Tpp Tpg| = 2N T~ Ty et by YT 40,
Tag T32 Tag Vet T T T T t2:1113"‘11123

(3.1a)
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Fig. 2. Error analysis for various stages of the |PC algorithm.

In our case, the equation solved is
o T
HQ=(-1.-1,..... R

and the true equation to be solved is

H=H+8H:0=0+80

T
M= (N N, N,

N =(¥_ X_ .Y ¥ .X X ¥ ¥ ¥ .T_X

o

Y, le=LZ . mned)

=4

and each element of Q isdivided by q33. Let

EHﬁ = {Eaﬂl,ﬁaaz, Eaﬂ,...,ﬁaﬂ}



where

fa_ = 8K, X, +BK X, B = BKLY_ 487 XN, 88, =3X

o o 'C'!3 D:;
fa_, = BT, X, + 8K, T, 8a  =8Y ¥, +8¥,¥, 8a =87,
fa =&KX annd fa = &F

@t o oS o

The products of errorsare neglected and (X 5, Y 5) are 2-D image coordinates for theath data point. It follows
from [9] that

My R P I ) (3.1b)
PRI C T e |
Mo, B T g [Tae

Thus, if the inherent errors dag j, were known, the corresponding solution errors dgg  would be obtained by

solving Eq. (3.1b). The degree of accuracy is consistent with the assumption of neglecting product of errors. Based on
dimensions of N, we have the following cases:

Casel: If N issquare (i.e. n = 8) and non-singular,
|1"|ﬂ:|i E, =12 ..8) (3.1¢0)

where
e f=1273;aand |3=e3=-.~q33 fiot ifncluded )

(3.1d)

|A3{ﬂ_1}+m| ({ for m,|3=1,2,3;mand|3:3}le)

] o=

a
+=1

where & ; {m =12 ... 3 Jtheelementsof the bt row of N-L. Thus, if the elements of N-L are calculated,
=3

approximate upper bounds on the effects of inherent errors can be obtained from Eq. (3.1€). Since they were derived
under the assumption that the products of errors are neglegible relative to E, they are not strictly upper bounds. How-
ever, they are acceptable as close approximations to the true upper bounds.

Case II: If N isnot a square matrix, we define aresidual matrix by

+ ~* +
EN =N -N
where Nt and £I+ are the pseudo-inverses of N an('i;I respectively. Then from [10]:

< . . (3.1f)
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3.2. Error in Rotational Elements

+

N

The matrix Q is found in all the three methods in the same manner. But the rotation matrix R is computed
from Q in three different ways. In this section, we shall treat these methods separately in order to investigate the prop-
agation of error dueto error in essential elements.

3.2.1. Error Analysis using the "First Method"

The propagation of error in the rotational elements, when the first method for IPC algorithmisused [2,4], is
investigated in this section. If the singular value decomposition (SVD) of , cf] ned as

0 =0+50 = T AT S (U 80 Ma + AN T 4 V1

is an approximation to the true value

T
0=UaWV

where 1T, §4, &% arethe error matrices; then the ath singular vector u the perturbed matrix |:! in terms of
theath si ngular vector ug of the matrix Q, can be approximated by the first- ~oraer Taylor Series Expansion and isgiven
by [11]:

uo=u o+ Ellll.l_x ) (3.29)
@ = Te T3 |, g -q 1 (o fow=1273)
By ‘g =g B -y
Therefore, L
i
|Euﬁ | = ut (3.2b)
aq w &g
By g =g iy

[

where 1+ 9, arethe entries of the matrices Q ancij respectively. The derivatives of the singular vectors (for k =
1,2, ...,9), assuming the singular vector V isknown, are:
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Q, othetrwize

wheres 55 (a =1, 2, 3) arethesingular values of Q. The advantage of using Taylor Series Expansionisthat it provides

the first-order derivative of the principal singular subspace with respect to the essential elements, and it can be com-
bined with other derivatives via the chain rule to obtain first-order perturbations in essential parameters. In this ap-
proach, the singular vectors are considered to be vector-valued functions of essential elements. This approach,
however, works only if we have distinct singular values. The expressions become ill-conditioned as singular values
get close together.

After finding error bounds for the singular vectors, we are in a position to find the same for the rotational
elements, which are given by the following equations;

(3.2d)

3
. = 3.2¢e
|Er-:-:|3|_ Bu"'vz[|u°"‘|‘|+|?ﬁ~r|} '::'3'5-.-|3 1.-2.-'3::' ( )
=1
where g, Sgp, and vy paretheentriesof U, L, and V respectively; and
gy = By = Bg = 8, LOF —euiﬁuﬁﬁ ieu,—eaﬁﬁuﬁ ica,and—eviﬁ?qﬁiev
has been assumed.

3.2.2. Error Analysis using the " Second Method"

Therotational elementsin terms of essential elements, using the second method [1,4], are given as:

q oL +E [ 1 aw+lF+3 qo:+2,|3 - qo:+1,|’5 qo:+2,|’5+2 ] B qo:,|3+1 [ q.x+1,|3 qoc+2,|3+1 B qo:+1,|’5+1 qa:+2,|3 ]
+1 -
. B [ qo:+1,|’5+1 qo:+2,|’5+2 qa:+1,|3+2 qa:+3,|’5+1]
> 5 03 .
e 2 2 9,
==1pr=1
(3.39)

where a,b=1, 2, 3; and are cyclic (for instance, fora =2, b =3, 0 4p p+1 =011); (t1, tp, t3) arethetranslations along
the x-, y-, and z-axes respectively. Therefore, the error bounds for the rotational elements are:

ar

i3
E
RS 3 3 .
1
w | T

(3.3b)
for &g = 6 _— 3(9.k=1,2,3). Thepartial derivativesin Eq. (3.3b) have not been computed in this paper.
3.2.3. Error Analysis using the "Third Method"

In this section, the error propagation using the third method for computation of R from Q [3] is presented.
DefiningH=QT and
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(3.49)
where hy istheathrow of H; {1, i. k 3  aetheunit vectors; and
Wab = |:I:| f+lo tﬁ+2 -1 [+2. 0 tﬁ-l-]:l
(3.4b)
wherea, b =1, 2, 3; and are in cyclic order. Therefore, rotational elements are given by:
r= T - 1 1 - 1 - 1 - 1
ol [{qa+3,|3+1 o qa,ﬁ+1 oo+ I:qac,ﬁ+2 oo+l qac+1,|3+2 ﬂi} {qa,ﬁﬂ oo+l qac+1,|3+1 'I}
L 1 1 - 1
I:q.:.c+2,|3+2 o qac_.ﬁ+2 -::+2:I]+[qac+1,|3 R N qoc+2,|3 ac+1]
(3.40)
Hence, the bounds are defined as:
3 |4r .
ir | = hi for —e_=&g = RS
| o g 2 1q Bl fey (mfywe=123)
k=1 e

(3.4d)
The partia derivativesin Eqg. (3.4d) are not computed in this paper.

3.3. Error in Translational Vector

The tranglational elementstg (a =1, 2, 3), in terms of essential elements, are given as|[2]:

5 (3.58)

2 2 2 . .
T, = > [— T * Lot q-:-:+2_.|3] (o dz owelic)

The error bounds for these elements are given as.

33 qﬁ‘r
EMEES > > T
[=1 4=1
(3.5b)
for =& SHI, Fe k=12 3)because
q
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3.4. Error in 3-D Motion Parameters

In this section, the errors in the motion parameters due to errorsin rotational elements, are studied separately
for two representations of rotation matrix R [2,7,8].

3.4.1. Using "First Representation” of Rotation Matrix

From the definitions of the directional cosines of an arbitrary axis, and the angle of rotation around this axis
using the first representation of R [2,7], the error bounds for these motion parameters are found to be:

|E'-.-'q|ie1_ > T at1d |EEI|£E:1_ > ‘T
R [y oL f=1 ol
[y
3.6a,b

r Gy I

General expressions for the partial derivatives are:

(1 - D A
2.+ 1 +2 . .
t il il ? L il for fvw=12.3 f=zv and e iz owelic
q 4d
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(3.6d)
3.4.2. Using "Second Representation” of Rotation Matrix

The second representation of the rotation matrix R is used in this section [6,8]. The error bounds for the
motion parametersin this case are:

da
23

| &m0 | = |H

23|

(3.79)



where

4.1. Using Real Data

Separate experiments, corresponding to 2-D images of the three positions of an octbox in Fig. 3(a), were conduct-
ed. The octbox hastwo parallel octagonal faces opposite to each other, and eight rectangular faces. Inthefirst exper-

iment (Fig. 3(b)), the octbox was rotated around the x-axis by -159. In the second experiment (Fig. 3(c)), the octbox

was rotated around the x-axis by 1059. In these experiments, rotation around the x-axis means that the angle of rota-
tion, by definition, is roll, or equivalently, the direction cosines of the arbitrary axis, around which the octbox
rotates, are given by u; =1.0; up, =0.0;ug = 0.0. The transgation along the three axesis 1 unit each. The data for

these three cases of octbox rotations are shown in Fig. 4(a), and Fig. 4(b) respectively, where coordinates of the verti-

i i
| | = r
ar 13 ar 33
13 | | 33 | |
dyr dy
|Ew|i T + ar
21 22
Elr21 | | Elr22 | |
do _ 1
dr E
2 -
’ «/[ T3
aw sz w13
ar 2 ar_ 2
13 1-r, 33 1-r,,
dy  Taz dy Ty
ar z ar__ z
21 1—1‘23 23 1—1‘23

4. EXPERIMENTAL RESULTS

ces of the octbox before and after the motion are given.

(3.7b)

(3.7¢)

(3.7d)

(3.7¢)

(3.7

In this section, we present experimental results for the |PC and the GI PC a gorithm tested successfully on real
data. The various error plots will also be discussed. These plots indicate the relationship between the errors in the
input set of data (coordinates of the features) and the errors in the output data (motion parameters).



(a)

(b

Fig. 3. Experiments with real-data.

(a) Octbox initsinitial position;

[e)

(b) first case of motion where Octbox is rotated through 15° around x-axis; and
(c) second case of motion where Octbox is rotated through 1050 around x-axis.
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Fig. 4. Real-data for motion of Octbox.

y z
-1 -1
-1 -0.5
1 1
1 -05
1 25
1 -1
1 -05
1 1
y z
-1 -1
-1 -0.5
1 1
1 -0.5
1 25
1 -1
1 -0.5
1 1

(a) Datafor the first case of motion, and
(b) datafor the second case of motion.

(b)
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3.414214
-3.058409
-0.585786
-0.238625
-0.379110

0.449490

1.193126

1.757359

@
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-4.44949
-1.936348
-0.449490
-0.644449
-0.136105
3.414214
3.222247
1.348469

v

7.595754
10.654163
-0.131652
0.584223
-1.268983
0.767327
0.584223
-0.131652

v

-1.303225
0.633123
0.767327
2.700675
0.359012
7.595754
2.700675
0.767327




4.1.1. Data Acquisition and Digitization

A solid octbox with side dimensions 1.5" x 4.5" was constructed and placed on amount capable of motionin
all three axes. The mount was flat black to minimize reflection from it. A video camera was placed at the same height
above the floor as the octbox and focused on it. The illumination was provided by atelevision floodlight, also at the
same height as the octbox. The octbox was videotaped in 30 secondsintervalswith the illumination source moved from
being placed along the axis of the camera, to a45° angle from the camera and finally to aright angle from the camera.
These scenes were recorded on a VHS videotape recorder on standard tape at the fastest tape speed alowed. The tape
was taken to the Image-Processing/Computer-Vision Laboratory at Rice University for digitizing and processing. The
tape was digitized using a Chorus Data Systems PC-EYE digitizer. Mounted in an IBM-XT, this digitizer is capable
of capturing a 640 (H) x 400 (V) pixel image with 6 bits per pixel quantization. The images were then transferred to
the main image processing computer system for enhancement and analysis.

4.1.2. Wireframe Extraction

Our procedure for wireframe extraction consisted of processing the digitized picture for noise removal and
edge detection. In both the raw pictures, noise was removed by Wiener filtering. The transfer function is of the form:

_ H*I:u,v:l
e | Hiw 4 | S vl
uwl|  ———
Sﬁ(u;-.r:l
(4.1)
SnnEu,v:l

I nour experiment, weassumedthat thedegradation processH(u,v) wasal ow-passfilter andthenoise-to-signa " __~
was equal to 2s2. s ff':"'f'r:'

The procedure for removing the noise consisted of the following steps:

Step 1: Separate the processed picture into two regions according to itsintensity level.
Sep 2: Compute the variance of each region.
Sep3:  Process each region using Eg. (4.1) with these variances.

For edge detection, the Sobel edge detector was used. From edges, information about the coordinates of the
corners was obtained by comparing the magnitudes of the gradients with a preset threshold value.

The GIPC algorithm has been applied to the first and second experiments, and the results are shown in Fig. 5(a)
and Fig. 5(b). In both the experiments, the camerawas rotated through 10° around its x-axis. With the same set of data
for these experimentsfor the octbox rotation (Figs. 3(b), 3(c)), thedirectional cosinesarefound to be same. Theangles
of rotation are -5° and 95° respectively, which means that the angles of rotation of the octbox are added by the amount

of rotation by the camera, and that indeed should be the case. These two experiments show the success of GIPC algo-
rithm with real data.



Estimated Trandational Vector ( up to ascale factor) is:

T =[ 3.863706, 3.863707, 3.863717 |7
Two possible solutions of Rotation Matrix are:

-0.3333%4  0.216496 0471405 1000000 0.000000 -0.0000010
0.772304 -0.050319 0.633257 and R'=|-0.000000 0.996195 -0.087156
0.54077% 0.575154 - 0.613810

0.000000 0087156 0.996195
The directional cosines of the axis and the angle of rotation about the
axis (corresponding to R and R') are respectively:
ny =0.576984; ny, =0.688845; ng =0.438843; q = 182.886128
n4'=1.000000; ny'=0.000006; n3'=0.000001; q' = 354.999983
Conclusion: Choose R' and its associated parameters as the final solution.

@

Estimated Trandationa Vector ( up to ascale factor) is:

T =[1.035277, 1.035273, 1.035283 |7
Two possible solutions of Rotation Matrix are:

K=

T.agodgod - 0000002 0000003 - 0333332 0471405 -0.516496

E= (0000003 -0.037156 - 0.996195 and R'=( 0.772304 0.633257 0050321

0.000002 0.996195 -0.087156 0.5940773 - 0613810 -0.575153
The directional cosines of the axis and the angle of rotation about the

axis (corresponding to R and R') are respectively:
nq =1.000000; ny, =0.000000; ng =0.000002; g =95.000000

nq' = 0.431055; ny'=0.860937; ng'=-0.195299; q' = 230.385837
Conclusion: Choose R and its associated parameters as the final solution.

(b)

Fig.5. Demonstration of GIPC algorithm using real-data.

(a) For thefirst case of Octbox rotation, and
(b) for the second case of Octbox rotation.



5. CONCLUDING REMARKS

In this paper, ageneralized expression for motion-analysis equation was derived, and the other three cases of
motion-analysis were found to be special cases of this case. In addition, the expressions for error bounds were derived
for various stages of the algorithm.
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