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A Generalized Image Point Correspondence (GIPC) algorithm, which enables the determination of
3-D motion parameters of an object in a configuration where both the object and the camera are moving, is dis-
cussed. A detailed error analysis of these algorithms has been carried out. Furthermore, this algorithm was test-
ed on both simulated and video-acquired data, and its accuracy was determined.   

1. INTRODUCTION

Motion-analysis, based on robotic vision, has widely been discussed in the literature [1,2,3,4,5] in developing the
Image Point Correspondence (IPC) algorithm. Methods used are: Two-view motion-analysis or monocular vision, ste-
reo or binocular vision, and stereo motion. However, the IPC algorithm has not been applied to the more general prob-
lem of motion-analysis involving a situation where both the object and the camera are moving [4].  Industrial and space
robots face this situation in locating and tracking of various objects/scenes when both the camera/video system and the
object move asynchronously. In the GIPC, a generalization of the IPC algorithm, this problem of motion-analysis is
discussed. The three methods of motion-analysis mentioned before become special cases of the GIPC presented in this
paper.

The accuracy of the IPC/GIPC algorithms depends on the availability and errors in the measured input parameters.
Input errors also include the deformation of the object over time. The error propagation for various stages of the IPC
will, therefore, be described in terms of the error bounds.

2.  THE GENERALIZED IMAGE POINT CORRESPONDENCE ALGORITHM

2.1. The Algorithm

The general case of motion-analysis is illustrated in Fig. 1. For simplicity in presentation, the equations that track
a single point P on a moving object by a moving camera are considered. Fi and Fj are the two frames with which the
camera coordinate system coincides at two different instants of time t i and tj (tj > ti) respectively. Point P moves from
one position P i to another position P j due to the rigid-body motion of the object. We assume (R i, Ti) and (R j, Tj) to be
the transformation parameters (rotation and translation) that link the frames F i and Fj respectively with the standard
frame S. Also, let (R ij, Tij) be the transformation parameters that link the frame Fi with the frame F j. The object moves



with the unknown motion parameters (R, T). The image plane is assumed to be at the focal point of the camera with
its X- and Y-axes parallel to those of the camera coordinate system, where z-axis is the line of sight.

The desired relationship between the coordinates of the initial and the final positions of point P (P i and Pj respec-
tively) recorded by the camera, with respect to the frames Fi and Fj respectively, is given by the following equation [4]:

pjj = Rij'  pii + Tij'         (2.1a)

where pαβ = (xαβ, yαβ, zαβ)T  is the vector of 3-D coordinates of Pβ relative to Fα at instant tβ  (α, β = i,j), and

Rij'  =  Rij
T  Ri  R  Ri

T  =  Rj  R  Ri
T    and    Tij'  =  - Rj  R  Ri

T  Ti + Rj  T + Tj 
(2.1b,c)

Eq. (2.1a) gives the expression for the generalized version of the motion-analysis equation .  Clearly, it does
not matter whether the object or the camera is moved first. R and T, the desired parameters to be estimated, are defined
as:

       

                                                      

                                                    and 

                                                                        (2.1d,e)
 
where  rαβ  (α, β = 1,2,3) are the rotational elements and tα  (α = 1,2,3) the translations along x-, y-, and z-axes re-
spectively.

Special Cases:   If F i is standard frame S, the motion equation can be written as

Rij' = Rij
T  R = R j  R  and  Tij' = Rj T + Tj                                                             (2.2a,b)

     
The IPC algorithm can be used to estimate the motion parameters (R ij',Tij') and hence (R, T) of the moving

object, assuming Rij and Tij are known.



Fig. 1.Geometry illustrating GIPC Algorithm.



2.1.1.  Monocular Vision:  In the case of the two-view motion-analysis equation, the location of the camera, taking the
pictures of the moving object, is fixed.  In that case,

Ri = Rj = Rij = I   and   Tij = Tj = O                                            (2.2c,d)

The generalized motion-equation, using Eqs. (2.2a,b) and (2.2c,d), reduces to

pjj = R pii + T

or to the more familiar two-view motion equation

p' = R p + T

as the frames Fi and Fj coincide with the frame S, such that pii = pi = p and pjj = pj = p', where pi = (xi, y i, zi)
T  and

pj = (xj, yj, zj)
T  are 3-D coordinates of Pi and Pj  relative to S respectively.

2.1.2.  Stereo Vision/Stereo Motion:  For a stereo vision/stereo motion case, the object is assumed to be stationary.  In
that case,

R = I;  Rij = Rj   and   T = O                                   (2.2e,f)

and the generalized motion-analysis equation, using Eqs. (2.2a,b) and (2.2e,f), reduces to

p' = Rj p + Tj

These cases of motion-analysis have been found to be equivalent [1]. The motion of point P i to point P j with
respect to a fixed frame F j is similar to the motion of frame Fj to frame F i with respect to a fixed point P.

3.  ERROR ANALYSIS

Since the IPC/GIPC algorithms can be implemented using a sequence of object images, any error in the input
data and sensor parameters becomes a source of inaccuracy in the output data.  The input data is the set of feature co-
ordinates of the object, and the output data are the 3-D motion parameters. The sources of perturbation errors have
been identified in [6,7] . 

In this section, we shall analyze the effect of changes in the input parameters on the output parameters for the three
different methods for the IPC/GIPC algorithm [1,2,3,4]. The two representations of the rotation matrix will also be
considered [2,4,8]. 
Since various steps are involved in this algorithm, the propagation of the error will be studied and the error bounds
found for each stage of the algorithm (Fig. 2) [7,9]. 

3.1.  Error in Essential Elements

The sensitivity of the essential elements  (elements of a matrix Q) to the error in input set of 2-D image coordinates
of the features, common to the three methods, will be studied in this section. By definition, matrix Q is represented in
terms of rotational and translational elements as [2,4]:

   

(3.1a)



Fig. 2. Error analysis for various stages of the IPC algorithm.

In our case, the equation solved is

and the true equation to be solved is

where ; 

and each element of Q is divided by q33 .  Let



where

The products of errors are neglected and (Xα, Yα) are 2-D image coordinates for the αth data point. It follows
from [9] that

                                                                                  (3.1b)

Thus, if the inherent errors δaαβ were known, the corresponding solution errors δqαβ would be obtained by
solving Eq. (3.1b). The degree of accuracy is consistent with the assumption of neglecting product of errors. Based on
dimensions of N, we have the following cases:

Case I:  If N is square (i.e. n = 8) and non-singular,

                                                         (3.1c)

where

                                                                                                                                
        (3.1d)

    Therefore,

                                                                                                        (3.1e)

where                                             are the elements of the βth row of N-1. Thus, if the elements of N-1 are calculated, 

approximate upper bounds on the effects of inherent errors can be obtained from Eq. (3.1e). Since they were derived
under the assumption that the products of errors are neglegible relative to Ea, they are not strictly  upper bounds. How-
ever, they are acceptable as close approximations to the true upper bounds.
Case II:  If N is not a square matrix, we define a residual matrix by

where  N+  and          are the pseudo-inverses of N and       respectively.  Then from [10]:

                                                      (3.1f)

where



3.2.  Error in Rotational Elements

The matrix Q is found in all the three methods in the same manner. But the rotation matrix R is computed
from Q in three different ways. In this section, we shall treat these methods separately in order to investigate the prop-
agation of error due to error in essential elements.

3.2.1.  Error Analysis using the "First Method"

The propagation of error in the rotational elements, when the first method   for IPC algorithm is used [2,4], is
investigated in this section. If the singular value decomposition (SVD) of     , defined as

is an approximation to the true value

where                           are the error matrices; then the αth  singular vector      of the perturbed matrix        in terms of
the αth singular vector uα of the matrix Q, can be approximated by the first-order Taylor Series Expansion and is given
by [11]:

                                                                                                                        (3.2a)

Therefore,

                                                         (3.2b)

  

where                   are the entries of the matrices Q and      respectively. The derivatives of the singular vectors (for k =
1, 2, ..., 9), assuming the singular vector V is known, are:

(3.2c)



(3.2d)

where σαα (α = 1, 2, 3) are the singular values of Q. The advantage of using Taylor Series Expansion is that it provides
the first-order derivative of the principal singular subspace with respect to the essential elements, and it can be com-
bined with other derivatives via the chain rule to obtain first-order perturbations in essential parameters. In this ap-
proach, the singular vectors are considered to be vector-valued functions of essential elements. This approach,
however, works only if we have distinct singular values. The expressions become ill-conditioned as singular values
get close together. 

After finding error bounds for the singular vectors, we are in a position to find the same for the rotational
elements, which are given by the following equations:

(3.2e)

where uαβ, σαβ, and vαβ are the entries of U, Λ , and V respectively; and 

 
has been assumed.
     

3.2.2.  Error Analysis using the "Second Method"

The rotational elements in terms of essential elements, using the second method  [1,4], are given as:

(3.3a)

where  a, b = 1, 2, 3; and are cyclic (for instance, for α = 2, β = 3, qα+2,β+1 = q11);  (t1, t2, t3) are the translations along

the x-, y-, and z-axes respectively.  Therefore, the error bounds for the rotational elements are:
  

(3.3b)

for                                                  (γ, κ = 1, 2, 3).  The partial derivatives in Eq. (3.3b) have not been computed in this paper. 

3.2.3.  Error Analysis using the "Third Method"

In this section, the error propagation using the third method for computation of R from Q [3] is presented.
Defining H = QT and 



(3.4a)

where hα  is the αth row of H;                            are the unit vectors; and

 Wαβ
(3.4b)

where α, β = 1, 2, 3; and are in cyclic order. Therefore, rotational elements are given by:

(3.4c)
Hence, the bounds are defined as:

(3.4d)
The partial derivatives in Eq. (3.4d) are not computed in this paper.

3.3.  Error in Translational Vector

The translational elements tα (α = 1, 2, 3), in terms of essential elements, are given as [2]:

(3.5a)

The error bounds for these elements are given as:

(3.5b)

for                                 (γ, κ = 1, 2, 3) because

          

(3.5c)



3.4.  Error in 3-D Motion Parameters
  

In this section, the errors in the motion parameters due to errors in rotational elements, are studied separately
for two representations of rotation matrix R [2,7,8].

3.4.1.  Using "First Representation" of Rotation Matrix

From the definitions of the directional cosines of an arbitrary axis, and the angle of rotation around this axis
using the first representation  of R [2,7], the error bounds for these motion parameters are found to be:

(3.6a,b)
for                                                                .

General expressions for the partial derivatives are:

(3.6c)
and

(3.6d)

3.4.2.  Using "Second Representation" of Rotation Matrix
     

The second representation of the rotation matrix R is used in this section [6,8].  The error bounds  for the
motion parameters in this case are:

(3.7a)



(3.7b)

(3.7c)

where

(3.7d)

(3.7e)

(3.7f)

4.  EXPERIMENTAL RESULTS

In this section, we present experimental results for the IPC and the GIPC algorithm tested successfully on real
data.  The various error plots will also be discussed.  These plots indicate the relationship between the errors in the
input set of data (coordinates of the features) and the errors in the output data (motion parameters).

4.1.  Using Real Data

Separate experiments, corresponding to 2-D images of the three positions of an octbox in Fig. 3(a), were conduct-
ed.  The octbox has two parallel octagonal faces opposite to each other, and eight rectangular faces.  In the first exper-
iment (Fig. 3(b)), the octbox was rotated around the x-axis by -15o. In the second experiment (Fig. 3(c)), the octbox
was rotated around the x-axis by 105o.  In these experiments, rotation around the x-axis means that the angle of rota-
tion, by definition, is roll, or equivalently, the direction cosines of the arbitrary axis, around which the octbox 
rotates, are given by υ1  = 1.0;  υ2  = 0.0; υ3  =  0.0. The translation along the three axes is 1 unit each.  The data for
these three cases of octbox rotations are shown in Fig. 4(a), and Fig. 4(b) respectively, where coordinates of the verti-
ces of the octbox before and after the motion are given.



Fig. 3. Experiments with real-data.

 (a) Octbox in its initial position; 
(b) first case of motion where Octbox is rotated through 15o around x-axis; and
 (c) second case of motion where Octbox is rotated through 105o around  x-axis.

  x  y   z        X'         Y'

   0 -1 -1   3.414214  7.595754
-1.5 -1 -0.5 -3.058409  10.654163
-2  1   1 -0.585786 -0.131652
-1.5  1 -0.5 -0.238625  0.584223
-1.5  1   2.5 -0.379110 -1.268983

   0  1 -1   0.449490  0.767327
 1.5  1 -0.5   1.193126  0.584223
   2  1   1   1.757359 -0.131652

    (a)

   x  y   z        X'   Y'

   0 -1 -1 -4.44949 -1.303225
-1.5 -1 -0.5 -1.936348  0.633123
-2  1   1 -0.449490 0.767327
-1.5  1 -0.5 -0.644449  2.700675
-1.5  1   2.5 -0.136105  0.359012

   0  1 -1   3.414214  7.595754
 1.5  1 -0.5   3.222247  2.700675
   2  1   1   1.348469  0.767327

        (b)

Fig. 4. Real-data for motion of Octbox.

   (a) Data for the first case of motion, and
(b) data for the second case of motion.



4.1.1. Data Acquisition and Digitization

A solid octbox with side dimensions 1.5" x 4.5" was constructed and placed on a mount capable of motion in
all three axes. The mount was flat black to minimize reflection from it. A video camera was placed at the same height
above the floor as the octbox and focused on it. The illumination was provided by a television floodlight, also at the
same height as the octbox. The octbox was videotaped in 30 seconds intervals with the illumination source moved from
being placed along the axis of the camera, to a 45o angle from the camera and finally to a right angle from the camera.
These scenes were recorded on a VHS videotape recorder on standard tape at the fastest tape speed allowed. The tape
was taken to the Image-Processing/Computer-Vision Laboratory at Rice University for digitizing and processing. The
tape was digitized using a Chorus Data Systems PC-EYE digitizer. Mounted in an IBM-XT, this digitizer is capable
of capturing a 640 (H) x 400 (V) pixel image with 6 bits per pixel quantization. The images were then transferred to
the main image processing computer system for enhancement and analysis.

4.1.2. Wireframe Extraction

Our procedure for wireframe extraction consisted of processing the digitized picture for noise removal and
edge detection. In both the raw pictures, noise was removed by Wiener filtering. The transfer function is of the form:

(4.1)           

In our experiment, we assumed that the degradation process H(u,v) was a low-pass filter and the noise-to-signal ratio                      
was equal to 2σ2. 

The procedure for removing the noise consisted of the following steps:

Step 1: Separate the processed picture into two regions according to its intensity level.
Step 2: Compute the variance of each region.
Step 3:    Process each region using Eq. (4.1) with these variances.

For edge detection, the Sobel edge detector was used. From edges, information about the coordinates of the
corners was obtained by comparing the magnitudes of the gradients with a preset threshold value.

The GIPC algorithm has been applied to the first and second experiments, and the results are shown in Fig. 5(a)
and Fig. 5(b). In both the experiments, the camera was rotated through 10o around its x-axis.  With the same set of data
for these experiments for the octbox rotation (Figs. 3(b), 3(c)), the directional cosines are found to be same. The angles
of rotation are -5o and 95o respectively, which means that the angles of rotation of the octbox are added by the amount
of rotation by the camera, and that indeed should be the case.  These two experiments show the success of GIPC algo-
rithm with real data.



Estimated  Translational Vector ( up to a scale factor) is:
T = [ 3.863706, 3.863707, 3.863717 ]T

Two possible solutions of Rotation Matrix are:

The directional cosines of the axis and the angle of rotation about the
axis (corresponding to R and R') are respectively:

ν1  = 0.576984;  ν2  = 0.688845;  ν3  = 0.438843; θ  = 182.886128
ν1' = 1.000000;  ν2' = 0.000006;  ν3' = 0.000001; θ' = 354.999983

Conclusion: Choose R' and its associated parameters as the final solution.
(a)

Estimated  Translational Vector ( up to a scale factor) is:
T = [ 1.035277, 1.035273, 1.035283 ]T

Two possible solutions of Rotation Matrix are:

The directional cosines of the axis and the angle of rotation about the
axis (corresponding to R and R') are respectively:

ν1  = 1.000000;  ν2  = 0.000000;  ν3  = 0.000002;   θ  = 95.000000
ν1' = 0.431055;  ν2' = 0.860937;  ν3' = -0.195299; θ' =  230.385837

Conclusion: Choose R and its associated parameters as the final solution.
(b)

Fig. 5.  Demonstration of GIPC algorithm using real-data.

(a) For the first case of Octbox rotation, and 
(b) for the second case of Octbox rotation.



5.  CONCLUDING REMARKS

In this paper, a generalized expression for motion-analysis equation was derived, and the other three cases of
motion-analysis were found to be special cases of this case. In addition, the expressions for error bounds were derived
for various stages of the algorithm.  
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