
THE SOFTWARE DOCUMENTATION
OF

POSITION REFERENCE SYSTEM
A User's Manual

Ver. 1.0

By

Sunil Fotedar

Contract NAS 9-17900

Job Order 16-403

ABSTRACT

All the routines used in developing software for Position Reference System are discussed in this

documentation.

ii

 ACKNOWLEDGEMENTS

Thanks are due to Oxford and Associates, Inc. of Houston; in particular Mr. Matthew W. Prucka; for

developing software for the system.

iii

 CONTENTS

Section Page

1 Introduction 1.1

2 Section A. Software for Position Reference System 2.1

2.1 How to Get Started 2.2

 2.2 Program Structure 2.4

 2.2.1 Utilities 2.5

 Snap Shot (<F1>) 2.6

Continuous (<F2>) 2.7

 Initialize (<F3>) 2.7

MVP->VGA (<F4>) 2.7

 Buff.->VGA (<F5>) 2.7

 MVP->File (<F6>) 2.8

 File->VGA (<F7>) 2.8

Search (<F9>) 2.8

 Return (<F10> or <ESC>) 2.8

 2.2.2 Calibrate 2.8

Calibrate (<F1>) 2.10

View (<F2>) 2.10

Return (<F10> or <ESC>) 2.10

 2.2.3 Search 2.10

 File ON/OFF (<F2>) 2.11

 Manual (<F3>) 2.11

 Return (<F10> or <ESC>) 2.11

iv

 CONTENTS (Contd.)

Section Page

2.2.4 Print 2.11

 Print (<F1>) 2.12

View (<F2>) 2.12

Stop (<F9>) 2.13

Return (<F10> or <ESC>) 2.13

2.2.5 Graph 2.13

Plot (x,y) (<F1>) 2.13

Target#1 (<F2>) 2.13

Target#2 (<F3>) 2.14

Lin. Vel. (<F4>) 2.14

Lin. Acc. (<F5>) 2.14

Angle (<F6>) 2.14

Ang. Vel. (<F7>) 2.14

Ang. Acc. (<F8>) 2.14

Return (<F10> or <ESC>) 2.14

2.2.6 Exit DOS 2.14

 2.2.7 Quit 2.15

2.3 File Description 2.15

 2.3.1 Source Code 2.15

 2.3.2 Include Files 2.18

 2.3.3 Library Files 2.20

 2.3.4 Make Files 2.20

v

 CONTENTS (Contd.)

Section Page

3 Section B. PRS Source Code Reference Manual 3.1

background_check 3.2

calibrate 3.3

calibrate_cameras 3.4

 calibrate_menu 3.5

 convert_track_file 3.6

 disk_to_mvp 3.7

 display_image 3.8

 fast_at 3.9

 frame 3.10

 get_stop_watch 3.11

 hp_draw 3.12

 hp_move 3.13

 hp_pen_down 3.14

 hp_pen_up 3.15

 init_com1 3.16

 init_com2 3.17

 initialize_mvp 3.18

 manual_select_camera 3.19

 matrix_inverse 3.20

 matrix_mult iple 3.21

 matrix_transpose 3.23

vi

 CONTENTS (Contd.)

Section Page

 mouse_get_button_press 3.25

 mouse_get_status 3.26

 mouse_graphic_cursor 3.27

 mouse_hide_cursor 3.28

 mouse_reset 3.29

 mouse_set_cursor 3.30

 mouse_set_horz_limit 3.31

 mouse_set_mickey 3.32

 mouse_set_text_cursor 3.33

 mouse_set_vert_limit 3.34

 mouse_show_cursor 3.35

 mvp_to_disk 3.36

plot_find_acc_u_max_min 3.37

plot_find_acc_v_max_min 3.38

plot_find_ang_acc_max_min 3.39

plot_find_ang_vel_max_min 3.40

 plot_find_max_time 3.41

plot_find_max_time_angle 3.42

plot_find_max_time_vel_uv 3.43

plot_find_v_max_min 3.44

plot_find_vel_u_max_min 3.45

plot_find_vel_v_max_min 3.46

 plot_hp 3.47

plot_hp_acc_u 3.48

plot_hp_acc_uv_labels 3.49

vii

 CONTENTS (Contd.)

Section Page

plot_hp_acc_v 3.50

plot_hp_ang_acc 3.51

plot_hp_ang_acc_labels 3.52

plot_hp_ang_vel 3.53

plot_hp_ang_vel_labels 3.54

plot_hp_angle 3.55

plot_hp_angle_labels 3.56

 plot_hp_u 3.57

 plot_hp_uv_labels 3.58

 plot_hp_v 3.59

plot_hp_vel_u 3.60

plot_hp_vel_uv_labels 3.61

plot_hp_vel_v 3.62

 plot_hp_x 3.63

 plot_hp_xy_labels 3.64

 plot_hp_y 3.65

 print_command 3.66

 print_matrix 3.67

 print_menu 3.68

 prs 3.69

 prs_main_menu 3.70

 read_image_from_file 3.71

 read_image_from_mvp 3.72

viii

 CONTENTS (Contd.)

Section Page

 read_pixel_in_buffer 3.73

 recv_com1 3.74

 recv_com2 3.75

 recv_string1 3.76

 recv_string2 3.77

 search_for_target 3.78

 send_com1 3.79

 send_com2 3.80

 send_string1 3.81

 send_string2 3.82

 slow_at 3.83

 start_stop_watch 3.84

 stat_com1 3.85

 stat_com2 3.86

 sw_camera 3.87

 track 3.88

 track_map 3.89

 track_snap_shot 3.90

 util_menu 3.91

 utilities 3.92

 verify_target 3.93

 xy_matrix 3.94

ix

 CONTENTS (Contd.)

Section Page

4 Section C. Library Reference Manual 4.1

 any_key 4.2

 beep 4.3

 box_screen 4.4

 chkkey 4.5

 command_clear 4.6

 command_handler 4.7

 command_init 4.8

 command_parameter_set 4.9

 command_set 4.10

 fkey_block 4.11

 fkey_clear 4.13

 flood_partial_screen 4.14

 inkey 4.15

 integer_boundry 4.16

 menu_allocate 4.17

 menu_attr 4.18

 menu_attr_field 4.19

 menu_check 4.20

 menu_clear_field 4.21

 menu_clr 4.22

 menu_cursor 4.23

x

 CONTENTS (Contd.)

Section Page

 menu_free 4.24

 menu_handler 4.25

 menu_init 4.26

 menu_init_field 4.27

 menu_init_field_attr 4.28

 menu_retrieve 4.29

 menu_set 4.30

 menu_set_field 4.33

 message 4.34

 print 4.35

 print_character 4.36

 print_no_attr 4.37

 query_message 4.38

 quit 4.39

 rev 4.40

 scr_clr 4.41

 scr_cursoff 4.42

 scr_curson 4.43

scr_page 4.44

 scr_pos 4.45

 scr_rowcol 4.46

 scr_setup 4.47

 wrtattr 4.48

5 Bibliography 5.1

xi

 INTRODUCTION

This report forms the second part of the three-part documentation of the Position Reference Sys-

tem (PRS). Here we shall present all the routines used in developing software for the PRS. This

report will be split up into three categories, namely :

Section A . Software for Position Reference System

Section B . Position Reference System Source Code Reference Manual

Section C. Library Reference Manual.

In section A, the software developed for PRS will be discussed. Section B explains all the routines

used for PRS software. Section C gives an account of all the library routines used in the develop-

ment of the software.

Introduction 1.1

 SECTION A

 SOFTWARE FOR POSITION REFERENCE SYSTEM

Software Documentation

2.1 HOW TO GET STARTED

The high-density diskette, provided with THE SOURCE CODE FOR PRS (Ver. 1.0), contains all the

software for running PRS. Put this diskette in the drive A of the main computer (ref.[1]). At the

prompt, type:

RESTORE

It is a batch file created to copy all the files from the diskette to drive C: (fixed disk drive of the main

computer). Similarly, if a backup is desired, put a new formatted high-density diskette into drive A:

and at the prompt, type:

BACK

In order to run the PRS program, change the directory of the main computer to the \prs directory by

typing the following command:

CD PRS

At the prompt type:

PRS

and hit <RETURN> key, which will begin execution of the program. The first window we see is the

Main Command Menu (MCM) window (Fig. 2.1). This window will allow user to select one of several

main functions. The purpose of the PRS is to locate three bright spots in an image of one of the

eleven cameras installed in the llaboratory, and then track them.

Software for PRS 2.2

Software Documentation

Fig. 2.1: Flow Chart for PRS Software Development.

Software for PRS 2.3

Software Documentation

It is done to find their state vector (position, orientation, linear and angular velocities and accelera-

tions). The bright spots in an image represent the PRS targets on a robot. The robot is remotely con-

trolled by a computer. The PRS targets are kept in a right-angled triangular configuration and a dark

background is provided. In order to search for the target and then track, the user should select the

Search command from the MCM window. This is done by either pressing the S key or by highlighting

the word by means of cursor keys and pressing the <RETURN> key. Once in the search mode, the

program will automatically search for the bright spots in each camera's field of view (FOV). Once

the targets are found, the program will begin to track the target. The user may abort this operation

with the <ESC> key or <F10> key. When the user leaves the Search command, the program will

return to the MCM window. Here, the user may select other commands, namely; Utilities, Calibrate,

Print, Graph, Exit DOS, or Quit commands.

If some modifications are made to the program, the user may recompile all source modules which

have changed by using the Microsoft's MAKE utility. This is done by typing:

MAKE PRS.MAK

2.2 PROGRAM STRUCTURE

The PRS program is structured in hierarchical set of command windows. When the program starts

executing, the user is placed in the MCM window. This window allows the user to select any of the

major commands in the program. Selecting a command may be done by either highlighting the com-

mand by using the up and down cursor keys and then

Software for PRS 2.4

Software Documentation

hitting <RETURN> key, or by hitting the key that corresponds to the highlighted letter of the com-

mand (in MAGENTA color in VGA mode). The program consists of seven commands as follows:

* Utilities

* Calibrate

* Search

* Print

* Graph

* Exit DOS

* Quit

A discussion of each command follows:

2.2.1 Utilities

This command gives the user access to many useful functions. Some of these functions take place

on the display monitor (color), both in text and graphics modes, and the camera

display monitor (monochrome). Here the user is able to change the following global

parameters of the program:

Current Camera Field: The parameter contains the number of the camera with which all operations

will be performed. The user may select any camera simply by entering a camera value in this field.

The default camera number is 6.

Software for PRS 2.5

Software Documentation

Threshold Level: The user may also set the current threshold level which is used when PRS targets

are searched. The default value is 120.

Maximum Background: The user may set this parameter in order to specify background. The de-

fault value is 0.

Bias: The parameter indicates the bias level which is set before a snap shot of the current camera

is taken. The default value is 0.

Image File Name: This field allows the user to specify a file name, usually TEST.IMG , which is used

when image files are written to/read from the disk.

Recorder File Name: This field allows the user to specify a file name, usually D:RECORDER.DAT ,

which is used to record the history of a given target track in terms of the 2-D image co-ordinates of

the PRS target(s). The D: drive is used as a virtual disk in order to speed up the computer while

the PRS target is being tracked.

The user can choose various commands from this window, displayed at the bottom of the EGA

screen, by simply hitting a function key. The functions of these keys are described as follows:

Snap Shot (<F1>):

By pressing <F1>, the user will take a snap shot of the scene using the current camera

which is displayed on the screen. When a snap shot is taken, the video image will appear on the

camera display only and the image is not placed in the computer's HUGE image buffer. Therefore,

before any analysis is desired on a current snap shot, the image must first be

Software for PRS 2.6

Software Documentation

placed in the buffer by the MVP->VGA function.

Continuous (<F2>):

This function will place the Matrox MVP-AT/NP frame grabber in continuous frame grabbing mode.

The user may exit this mode by simply pressing any key.

Initialize (<F3>):

This function will initialize the frame grabber and it only needs to be done if the display on the cam-

era does not look desirable. Sometimes this function must be done more than once.

MVP->VGA (<F4>):

This function will place the image currently in the frame grabber into the HUGE image buffer and

then display that buffer in VGA graphics mode. See Buff.->VGA.

Buff.->VGA (<F5>):

This function will place the computer terminal into VGA graphics mode and place an image of the

current HUGE image buffer on the screen. The image is placed on the screen using a 16 pseudo-

color scale. Also, the image has been compressed by a factor of 4 (2 in both x and y directions).

Once the image is on the screen of the display monitor, the user will notice a graphics cursor which

is controlled by a mouse. By moving the mouse, the cursor can be pointed to any pixel in the image.

The computer will display the actual four image points averaged to one point. The computer will also

display the boundary values for each of the four pixels. A pass or fail will then be displayed for each

pixel depending on the results of the boundary test for that pixel (ref. [1]).

Software for PRS 2.7

Software Documentation

The user may perform a search on the image by pressing <F1>. If the computer is able to locate

the target, it will display the corresponding target points by drawing a circle around each target

which is found on the screen. To leave the VGA graphics display, the user should press <F10> or

<ESC>.

MVP->File (<F6>):

This function will read the image file name which is displayed on the screen and place the image

currently on the video display to that file.

File->EGA (<F7>):

This function will place an image which is stored in the image file in the HUGE image

buffer and then display that buffer in VGA graphics mode. See Buff.->VGA.

Search (<F9>):

This function will perform a search in the HUGE image buffer for the PRS targets. If the computer is

able to locate the target, it will display the corresponding targets by drawing a circle around each

on the camera display monitor.

Return (<F10> or <ESC>):

The user will be able to leave this window using either this command or by pressing <ESC>.

2.2.2 Calibrate

This command allows user to specify a file, named XY_UV.DAT , which contains the (x, y) and cor-

responding (u, v, z) co-ordinates of the optical targets (calibration points) along

Software for PRS 2.8

Software Documentation

with the corresponding camera for the (x, y) co-ordinate of the calibration point. The data is stored

by the user in the following format:

x1,j y1,j u1,j v1,j z1,j cj prs_u1,jprs_v1,j

x2,j y2,j u2,j v2,j z2,j cj prs_u2,jprs_v2,j

x3,j y3,j u3,j v3,j z3,j cj prs_u3,jprs_v3,j

* * * * * * * *

* * * * * * * *

where (xn,j, yn,j) and (un,j, vn,j , zn,j) are the image and floor co-ordinates of the nth (n > 15) optical

target respectively in jth (j=1,2,...,11) camera's FOV. (prs_u1,j, prs_v1,j) are the designated PRS

co-ordinates of the optical targets, which are not used for calibration purposes and are stored in the

file only to keep the user informed about which target is being referred to. This file may contain as

many calibration points as is desired. The floor co-ordinates of the targets are measured by means

of high-precision electronic theodolites.

The calibration process yields a set of co-efficients (Ai,j, Bi,j) for each camera (i=0,1,2,...,15;

j=1,2,3,...,11). These co-efficients are stored in a separate file, called CALIBRAT.DAT , and are

used later when the image co-ordinates of the tracked PRS target(s) are converted into height-cor-

rected floor co-odinates to give the position of the PRS target.

The user can choose various commands from this window by simply hitting a function key. The

functions of these keys are described as follows:

Software for PRS 2.9

Software Documentation

Calibrate (<F1>):

By pressing <F1>, the data from XY_UV.DAT will be used to calibrate each camera and the result

put into CALIBRAT.DAT .

View (<F2>):

By pressing <F2>, the user can view either of the three files - XY_UV.DAT, CALIBRAT.DAT or D:RE-

CORDER.DAT on the screen. Any of these files can be selected by hitting the SPACEBAR of the

keyboard of the main computer. The DOS command TYPE filename|MORE has been used for this

purpose.

Return (<F10> or <ESC>):

The user may return to the MCM window by pressing <F10> or <ESC>.

2.2.3 Search

When the user selects this command, the PRS program will begin by searching the current cam-

era's output (which can be changed in the Utilities command) for the target. The user has the option

to track only one target (to get information about position, linear velocity and linear acceleration) or

two targets (to determine orientation, angular velocity and angular acceleration in addition to posi-

tion, linear velocity and linear acceleration). The targets are identified as target #1, target #2, and

target #3 depending on which side (of the triangle they form) they are opposite to. If the target(s) is

not found in the current camera, the program will change cameras automatically and continue

searching for the target(s) until it is found, or the user aborts by pressing either <ESC> or <F10>.

Various commands can be chosen from this window by hitting some function keys. The

Software for PRS 2.10

Software Documentation

function of these keys is described as follows:

File ON/OFF (<F2>):

The 2-D image co-ordinates of the target(s) and the history of the camera selection is written to

D:RECORDER.DAT . This function may be turned off or on simply by pressing <F2>.

Manual (<F3>):

By pressing <F3> while the target is being searched, the user may place the cursor by the mouse

over a given camera field in the camera layout being displayed on the screen. The 'camera layout'

is a representative diagram of the FOV of each camera. Once the user has placed the mouse cursor

in the FOV of the desired camera, the user may select that camera to search for the target by hitting

either of the mouse buttons.

Return (<F10> or <ESC>):

The user may leave window by hitting either <ESC> or <F10>. This will return the user to the MCM

window. While exiting this window, the user will have the option to convert the tracked 2-D image

co-ordinates into floor co-ordinates and stored in various other data files. Other computations are

also performed to find position, orientation, linear and angular velocities and accelerations (or state

vector). The data files created, with their contents (in addition to camera number and time), are list-

ed in the table 2.1.

2.2.4 Print

This function will allow the user to print any one of the data file by first selecting the data file with

the SPACEBAR of the keyboard and then pressing the <F1> key. The user can choose various com-

mands from this window by simply hitting a function key. The functions

Software for PRS 2.11

Software Documentation

of these keys are described as follows:

Print (<F1>):

By pressing <F1>, the user can print either of the the files - TARGET1.DAT,

Table 2.1:Various Data Files and their contents

Data File Contents

D:RECORDER.DAT 2-D image co-ordinates of target(s)

TARGET1.DAT Position of target #1

TARGET2.DAT Position of target #2 (if tracked)

VEL_ACC.DAT Linear velocity and acceleration of target #1

ANGLE.DAT Orientation, angular velocityand acceleration of the targets (only

if target #2 is tracked)

TARGET2.DAT, VEL_ACC.DAT, ANGLE.DAT, or D:RECORDER.DAT . The NORTON utility LIST file-

name has been used for this purpose.

View (<F2>):

By pressing <F2>, the user can view the three files - XY_UV.DAT , CALIBRAT.DAT or D:RECORD-

ER.DAT on the screen. The DOS command TYPE filename |MORE has been used for this purpose.

Software for PRS 2.12

Software Documentation

Stop (<F9>):

Any data sent to the printer for printing can be stopped at any moment by pressing <F9>.

It is particularly useful when the printer is printing out garbage or anything that the user does not like.

Return (<F10> or <ESC>):

The user may return to the MCM window by pressing <F10> or <ESC>.

2.2.5 Graph

This function will allow the user to plot the data in various data files on a plotter, which is connected

to the main computer through the secondary communications port. The various options available

to the user are:

Plot (x,y) (<F1>):

By pressing <F1>, the user plots the 2-D image co-ordinates (x,y) of the PRS target(s) with respect

to time (in terms of elapsed seconds).

Target#1 (<F2>):

The height-projected floor co-ordinates (uT, vT) of target #1 (position) are plotted as a function of

time by pressing <F2>.

Software for PRS 2.13

Software Documentation

Target#2 (<F3>):

The height-corrected floor co-ordinates of target #2 (if tracked) are plotted as a function of time by

pressing <F3>.

Lin. Vel. (<F4>):

By pressing <F4>, the linear velocity of target #1 is plotted against time.

Lin. Acc. (<F5>):

The linear acceleration of target #1 is plotted against time by pressing <F5>.

Angle (<F6>):

The orientation of the robot can be plotted as a function of time by pressing <F6>.

Ang. Vel. (<F7>):

The angular velocity of the robot is plotted against time if <F7> is pressed.

Ang. Acc. (<F8>):

The angular acceleration of the robot is plotted against time if <F8> is pressed.

Return (<F10> or <ESC>):

The user may return to the MCM window by either pressing <F10> or <ESC>.

2.2.6 Exit DOS

This command allows the user to create a DOS session which can be used to access the operating

system commands. In order to return to the program which remained in

Software for PRS 2.14

Software Documentation

memory, just type:

 EXIT

and hit the <RETURN> key.

Quit

The user may terminate and leave the program by using this command.

2.3 FILE DESCRIPTION

This section will describe the files which contain various routines to develop software for PRS.

2.3.1 Source Code

 All source files are in the directory /prs .

 cal.c

This file contains the calibration routine of the cameras.

 convert.c

This file contains all the routines required for conversion of 2-D image locations of the

target(s) into height-corrected position co-ordinates, and determination of

Software for PRS 2.15

Software Documentation

state vector of the target(s).

display.c

Contains the code required to place a camera image to the VGA screen.

 frame.c

This routine draws the border around the menus and displays the title information.

 hp_line.c

This contains the plotter routines.

 iocom1.c

Serial port 1 communication routine used to establish link with the video switcher.

 iocom2.c

Serial port 2 communication routine used to establish link with the plotter.

 matrix.c

Several matrix operations including matrix transpose, matrix multiply, and matrix in-

verse.

 matrox.c

Contains an initialization routine used on the frame grabber. This file also contains

dummy routines when running the program from computer which does not have a frame grab-

ber.

 Software for PRS 2.16

Software Documentation

 mouse_f.c

Routines used in setting up and controlling the mouse.

 plot1.c , plot2.c, plot3.c, plot4.c

Contain routines for plotting various components of state vector of the targets are in these

files.

 print.c

This routine will allow the user to print out data files.

 prs.c

The entry point of the program. The main menu is located in this file.

 search.c

Routines used to search for PRS targets in an image.

 swcam.c

Routines used by the video switcher to select cameras.

 track.c

This files contains the routines used to track the PRS target(s).

 util.c

Various routines used in testing the cameras and the search routine.

Software for PRS 2.17

Software Documentation

2.3.2 Include Files

The following include files are in the directory \prs\include because they are directly

related to the main program.

mvp.h

All of the definition statements associated with the frame grabber are included in this file.

prs.def

This file contains all the # define statements for all the source files.

 prs.h

This file contains the declarations of all global variables. This file is only included

in the main source routine.

 prs.ext

This file contains extern declarations of all the variables which are declared in

prs.h. This file is included in any routine which used any global variables.

 The rest of the include files are in the directory \prs\library\include because they are

associated with the library routines.

 box.def

This file contains the ASCII values for the box drawing characters.

Software for PRS 2.18

Software Documentation

 color.def

The values for text and graphic colors are here.

 command.ext

The extern declarations for the command structure which is used in the com-

mand-handler routines.

 command.h

The global declarations of the preceding file.

 menu.ext

The extern declarations for the menu structure which is used in the menu-handler

routines.

 menu.h

The global declarations of the preceding file.

 mouse.def

#define statements for the mouse -handler routines.

 scancode.def

Keyboard scancode #define values.

 screen.ext

The extern declarations of the screen structure which is used in the screen- han-

dler routines.

Software for PRS 2.19

Software Documentation

 screen.h

The global declarations of the preceding file.

 2.3.3 Library Files

 mvplm.lib

The frame grabber library in the directory \prs.

 mplm.lib

The frame grabber library in the directory \prs.

 mouse.lib

This is the MICROSOFT C library from the Microsoft's Mouse Development Kit (Ver-

sion 1.01). The source file mouse_f.c needs this library. This library can be found in the default li-

brary directory which is defined in the AUTOEXEC.BAT .

library.lib

This is a library of a set of miscellaneous C routines. The library can be found in

\prs\library\lib.

2.3.4 Make Files

 prs.mak

This file contains the MAKE utility of the Microsoft's C Compiler (ver. 5.0) which is used

to compile/link all of the source code.

Software for PRS 2.20

Software Documentation

prs.arf

This file contains the link parameters for the program.

Software for PRS 2.21

SECTION B

 PRS SOURCE CODE REFERENCE MANUAL

Software Documentation

 PRS SOURCE CODE REFERENCE MANUAL

BACKGROUND_CHECK

DESCRIPTION:

This function will calculate the background threshold value. Offset is the number of

(bytes in a row * size of the target) which will be used to find where the vertical pixels will start

for the background. background_value[0] is the left horizontal; [1] is the right horizontal; [2] is up

vertical; [3] is down vertical.

SYNTAX:

 int background_check(current_pixel, offset)

 unsigned char huge *current_pixel;

 int offset;

PRS Source Code Reference Manual 3.2

Software Documentation

CALIBRATE

DESCRIPTION:

This function will allow the user to calibrate the CCD cameras.

 SYNTAX:

 int calibrate()

PRS Source Code Reference Manual 3.3

Software Documentation

CALIBRATE_CAMERAS

DESCRIPTION:

This function will calculate the calibration co-efficient matrix for each CCD camera and

store that matrix in the file which is specified by the user (CALIBRAT.DAT).

 SYNTAX:

 calibrate_cameras()

PRS Source Code Reference Manual 3.4

Software Documentation

CALIBRATE_MENU

DESCRIPTION:

This function will set the menu structure for the calibrate command window.

SYNTAX:

 calibrate_menu()

PRS Source Code Reference Manual 3.5

Software Documentation

CONVERT_TRACK_FILE

DESCRIPTION:

This function will convert the tracked 2-D image co-ordinates into floor co-ordinates by

using the calibration co-efficient matrix for each camera. This gives position of one of the targets

and its linear velocity and acceleration are computed (if track_two_targets is NO). If two targets are

tracked (track_two_targets = YES), the orientation and angular velocity and acceleration of the tar-

gets are also computed.

SYNTAX:

convert_track_file(track_two_targets)

int track_two_targets;

PRS Source Code Reference Manual 3.6

Software Documentation

DISK_TO_MVP

DESCRIPTION:

This function will write a 512x512 byte array to the frame grabber board and from

image_file_name. SUCCESSFUL (0) will be returned, if appropriate.

SYNTAX:

 int disk_to_mvp()

PRS Source Code Reference Manual 3.7

Software Documentation

DISPLAY_IMAGE

DESCRIPTION:

 This function will display an image on the VGA graphics screen. The image is either

FROM_FILE (0) or FROM_MVP (1) or FROM_BUFFER (2).

SYNTAX:

 int display_image(origin)

 int origin;

PRS Source Code Reference Manual 3.8

Software Documentation

FAST_AT

DESCRIPTION:

 This function will speed up the PC's Limited 286 to 12 Mz. This is not needed if Com-

paq's 386/20 is used.

 SYNTAX:

 fast_at()

PRS Source Code Reference Manual 3.9

Software Documentation

FRAME

DESCRIPTION:

 This function will display the menu-style frame.

SYNTAX:

 frame()

PRS Source Code Reference Manual 3.10

Software Documentation

GET_STOP_WATCH

DESCRIPTION:

This function will get the current and elapsed stop-watch time.

SYNTAX:

get_stop_watch()

PRS Source Code Reference Manual 3.11

Software Documentation

HP_DRAW

DESCRIPTION:

This void function will plot a line on an HP plotter.

SYNTAX:

void hp_draw(x1, y1)

int x1, y1;

PRS Source Code Reference Manual 3.12

Software Documentation

HP_MOVE

DESCRIPTION:

This void function will move the HP plotter pen.

SYNTAX:

void hp_move(x1, y1)

int x1, y1;

PRS Source Code Reference Manual 3.13

Software Documentation

HP_PEN_DOWN

DESCRIPTION:

This void function will set the HP plotter pen down.

SYNTAX:

void hp_pen_down()

PRS Source Code Reference Manual 3.14

Software Documentation

HP_PEN_UP

DESCRIPTION:

This void function will lift the HP plotter pen up.

SYNTAX:

void hp_pen_up()

PRS Source Code Reference Manual 3.15

Software Documentation

 INIT_COM1

DESCRIPTION:

 This function will initialize serial port 1.

SYNTAX:

 init_com1()

PRS Source Code Reference Manual 3.16

Software Documentation

 INIT_COM2

DESCRIPTION:

 This function will initialize serial port 2.

SYNTAX:

 init_com2()

PRS Source Code Reference Manual 3.17

Software Documentation

 INITIALIZE_MVP

DESCRIPTION:

 This function will initalize the Matrox's MVP AT/NP frame grabber board.

 SYNTAX:

 int initialize_mvp()

PRS Source Code Reference Manual 3.18

Software Documentation

MANUAL_SELECT_CAMERA

DESCRIPTION:

This function will allow the user to pick a new camera with the mouse. The routine will

return the new_camera selected and the approximate coordinates in the camera image.

 SYNTAX:

 manual_select_camera(new_camera, x, y)

 int *new_camera;

 int *x, *y;

PRS Source Code Reference Manual 3.19

Software Documentation

MATRIX_INVERSE

DESCRIPTION:

This function will calculate the inverse of a given matrix mat[] and return the result in

inv[]. The matrix is a square matrix with dimension dim.

SYNTAX:

 double matrix_inverse(mat, dim, inv)

 double mat[] ;

 double inv[] ;

 int dim ;

PRS Source Code Reference Manual 3.20

Software Documentation

 MATRIX_MULTIPLE

DESCRIPTION:

 This function will calculate the matrix multiplication of matrix a with matrix b and place

the result in matrix c.

 SYNTAX:

 void matrix_multiple(a, b, c, row_in_a, col_in_a, col_in_b)

 double *a;

 double *b;

 double *c;

 int row_in_a, col_in_a, col_in_b ;

 SEMANTICS:

 This routine is to do matrix multiply of a * b = c. The inputs should be declared in main

as:

 double a["row_in_a"]["col_in_a"] ; double b["col_in_a"]

["col_in_b"] ; double c["row_in_a"]["col_in_b"] ;

PRS Source Code Reference Manual 3.21

Software Documentation

 The call would then be:

 matrix_multiple(a, b, c, "row_in_a", "col_in_a", "col_in_b") ;

 EXAMPLE:

 double a[2][3], b[3][3], c[2][3] ;

 matrix_multiple(a, b, c, 2, 3, 3) ;

 Note Well: If the variables row_in_a, col_in_a, and col_in_b do not exactly match those

dimensions of their arrays when declared, then these

 routines will not work!

PRS Source Code Reference Manual 3.22

Software Documentation

 MATRIX_TRANSPOSE

 DESCRIPTION:

 This function will calculate the matrix transpose of matrix a and place the result in ma-

trix b.

 SYNTAX:

 void matrix_transpose(a, b, row_in_a, col_in_a)

 double *a, *b ;

 int row_in_a, col_in_a ;

 SEMANTICS:

 This routine transposes the matrix a and places the result in matrix b.

 Note Well: The row_in_a and col_in_a variables must be equal to the row and col di-

mensions of the matrix a, and to col and row dimensions of the matrix b.

PRS Source Code Reference Manual 3.23

Software Documentation

EXAMPLE:

 double a[2][3], b[3][2] ;

 matrix_transpose(a, b, 2, 3) ;

PRS Source Code Reference Manual 3.24

Software Documentation

MOUSE_GET_BUTTON_PRESS

DESCRIPTION:

 This function will return the current status of the buttons in status with bit 0 representing

the left button and bit 1 the right button. If the bit is a 1 then the button is down; 0 the button is

up. The user will specify which button the information is requested in the variable button.

The routine will return the number of times the button was pressed since the last time this rou-

tine was called. Also, the horizontal and vertical position of the cursor at the last time the

button was pressed is returned.

 SYNTAX:

 mouse_get_button_press(button, status, number_of_presses,

 horz_pos, vert_pos)

 int button;

 int *status;

 int *number_of_presses;

 int *horz_pos, *vert_pos;

PRS Source Code Reference Manual 3.25

Software Documentation

 MOUSE_GET_STATUS

DESCRIPTION:

 This function will get the mouse button status and mouse position.

 SYNTAX:

 mouse_get_status(status, horz_position, vert_position)

 int *status;

 int *horz_position;

 int *vert_position;

PRS Source Code Reference Manual 3.26

Software Documentation

 MOUSE_GRAPHIC_CURSOR

 DESCRIPTION:

 This function will display a graphics cursor.

 SYNTAX:

 mouse_graphics_cursor()

PRS Source Code Reference Manual 3.27

Software Documentation

 MOUSE_HIDE_CURSOR

 DESCRIPTION:

 This function will turn off the mouse cursor.

 SYNTAX:

 mouse_hide_cursor()

PRS Source Code Reference Manual 3.28

Software Documentation

MOUSE_RESET

DESCRIPTION:

 This function will reset the mouse. This function will return

MOUSE_NOT_INSTALLED (-1) if appropriate.

 SYNTAX:

 int mouse_reset()

PRS Source Code Reference Manual 3.29

Software Documentation

MOUSE_SET_CURSOR

 DESCRIPTION:

 This function will set the mouse cursor position.

 SYNTAX:

 mouse_set_cursor(horz_position, vert_position)

 int horz_position;

 int vert_position;

PRS Source Code Reference Manual 3.30

Software Documentation

 MOUSE_SET_HORZ_LIMIT

 DESCRIPTION:

 This function will set the minimum and maximum horizontal cursor position.

 SYNTAX:

 mouse_set_horz_limit(minimum_position, maximum_position)

 int minimum_position;

 int maximum_position;

PRS Source Code Reference Manual 3.31

Software Documentation

 MOUSE_SET_MICKEY

 DESCRIPTION:

 This function will set the mouse mickey to pixel ratio.

 SYNTAX:

 mouse_set_mickey(horz_mickey, vert_mickey)

 int horz_mickey;

 int vert_mickey;

PRS Source Code Reference Manual 3.32

Software Documentation

 MOUSE_SET_TEXT_CURSOR

 DESCRIPTION:

 This function will set the text cursor. If cursor_select equals 0 then the software text

cursor will be selected, else if the cursor_select equals 1 the hardware text cursor is select-

ed. The mask variable is defined as:

 bits(15-blinking, 12-14 background color, 11 intensity,

 8-10 foreground color, 0-7 character).

The screen_mask is ANDed with the current char. and cursor_mask is XORed with the

result. If hardware cursor is selected, the screen_mask is the scan line start and the

cursor_mask is the scan line stop.

 SYNTAX:

 mouse_set_text_cursor(cursor_select, screen_mask, cursor_mask)

 int cursor_select;

 int screen_mask, cursor_mask;

PRS Source Code Reference Manual 3.33

Software Documentation

MOUSE_SET_VERT_LIMIT

 DESCRIPTION:

 This function will set the minimum and maximum vertical cursor position.

 SYNTAX:

 mouse_set_vert_limit(minimum_position, maximum_position)

 int minimum_position;

 int maximum_position;

PRS Source Code Reference Manual 3.34

Software Documentation

 MOUSE_SHOW_CURSOR

 DESCRIPTION:

 This function will turn on the mouse cursor which will automatically move with the

mouse movement.

 SYNTAX:

 mouse_show_cursor()

PRS Source Code Reference Manual 3.35

Software Documentation

 MVP_TO_DISK

DESCRIPTION:

 This function will read a 512 x 512 byte array from the MVP board and put it into

image_file_name. SUCCESSFUL (0) will be returned if appropriate.

 SYNTAX:

 int mvp_to_disk()

PRS Source Code Reference Manual 3.36

Software Documentation

PLOT_FIND_ACC_U_MAX_MIN

DESCRIPTION:

This function will find minimum and maximum of 'u' component of linear acceleration in

filename .

SYNTAX:

plot_find_acc_u_max_min(plot_acc_u_min,plot_acc_u_max, filename)

char *filename;

int *plot_acc_u_min;

int *plot_acc_u_max;

PRS Source Code Reference Manual 3.37

Software Documentation

PLOT_FIND_ACC_V_MAX_MIN

DESCRIPTION:

This function will find minimum and maximum of 'v' component of linear acceleration in

filename .

SYNTAX:

plot_find_acc_v_max_min(plot_acc_v_min,plot_acc_v_max, filename)

char *filename;

int *plot_acc_v_min;

int *plot_acc_v_max;

PRS Source Code Reference Manual 3.38

Software Documentation

PLOT_FIND_ANG_ACC_MAX_MIN

DESCRIPTION:

This function will find minimum and maximum of angular acceleration in

filename .

SYNTAX:

plot_find_ang_acc_max_min(plot_ang_acc_min,plot_ang_acc_max,

filename)

char *filename;

int *plot_ang_acc_min;

int *plot_ang_acc_max;

PRS Source Code Reference Manual 3.39

Software Documentation

PLOT_FIND_ANG_VEL_MAX_MIN

DESCRIPTION:

This function will find minimum and maximum of angular velocity in filename .

SYNTAX:

plot_find_ang_vel_max_min(plot_ang_vel_min,plot_ang_vel_max,

filename)

char *filename;

int *plot_ang_vel_min;

int *plot_ang_vel_max;

PRS Source Code Reference Manual 3.40

Software Documentation

PLOT_FIND_MAX_TIME

DESCRIPTION:

This function will return the maximum elapsed time in filename.

SYNTAX:

plot_find_max_time(filename)

char *filename;

PRS Source Code Reference Manual 3.41

Software Documentation

PLOT_FIND_MAX_TIME_ANGLE

DESCRIPTION:

This function will return the maximum elapsed time in filename.

SYNTAX:

plot_find_max_time_angle(filename)

char *filename;

PRS Source Code Reference Manual 3.42

Software Documentation

PLOT_FIND_MAX_TIME_VEL_UV

DESCRIPTION:

This function will return the maximum elapsed time in filename.

SYNTAX:

plot_find_max_time_vel_uv(filename)

char *filename;

PRS Source Code Reference Manual 3.43

Software Documentation

PLOT_FIND_V_MAX_MIN

DESCRIPTION:

This function will find minimum and maximum of 'v' co-ordinates in filename .

SYNTAX:

plot_find_v_max_min(plot_v_min, plot_v_max, filename)

char *filename;

int *plot_v_min;

int *plot_v_max;

PRS Source Code Reference Manual 3.44

Software Documentation

PLOT_FIND_VEL_U_MAX_MIN

DESCRIPTION:

This function will find minimum and maximum of 'u' component of linear velocity in filena-

me .

SYNTAX:

plot_find_vel_u_max_min(plot_vel_u_min,plot_vel_u_max, filename)

char *filename;

int *plot_vel_u_min;

int *plot_vel_u_max;

PRS Source Code Reference Manual 3.45

Software Documentation

PLOT_FIND_VEL_V_MAX_MIN

DESCRIPTION:

This function will find minimum and maximum of 'v' component of linear

velocity in filename .

SYNTAX:

plot_find_vel_v_max_min(plot_vel_v_min,plot_vel_v_max, filename)

char *filename;

int *plot_vel_v_min;

int *plot_vel_v_max;

PRS Source Code Reference Manual 3.46

Software Documentation

PLOT_HP

DESCRIPTION:

This function will allow the user to plot the data in various files on an HP plotter.

SYNTAX:

plot_hp()

PRS Source Code Reference Manual 3.47

Software Documentation

PLOT_HP_ACC_U

DESCRIPTION:

This function will plot the 'u' component of the linear acceleration of the PRS target(s)

(data in filename) with respect to time.

SYNTAX:

plot_hp_acc_u(filename)

char *filename;

PRS Source Code Reference Manual 3.48

Software Documentation

PLOT_HP_ACC_UV_LABELS

DESCRIPTION:

This function will plot the labels for the linear acceleration graph. The data is kept in filena-

me .

SYNTAX:

plot_hp_acc_uv_labels(filename)

char *filename;

PRS Source Code Reference Manual 3.49

Software Documentation

PLOT_HP_ACC_V

DESCRIPTION:

This function will plot the 'v' component of linear acceleration of the PRS target(s) (data in

filename) with respect to time.

SYNTAX:

plot_hp_acc_v(filename)

char *filename;

PRS Source Code Reference Manual 3.50

Software Documentation

PLOT_HP_ANG_ACC

DESCRIPTION:

This function will plot the angular acceleration of the PRS targets (data in filename) with

respect to time.

SYNTAX:

plot_hp_ang_acc(filename)

char *filename;

PRS Source Code Reference Manual 3.51

Software Documentation

PLOT_HP_ANG_ACC_LABELS

DESCRIPTION:

This function will plot the labels for angular acceleration graph. The data is kept in filena-

me .

SYNTAX:

plot_hp_ang_acc_labels(filename)

char *filename;

PRS Source Code Reference Manual 3.52

Software Documentation

PLOT_HP_ANG_VEL

DESCRIPTION:

This function will plot the angular velocity of the PRS targets (data in

filename) with respect to time.

SYNTAX:

plot_hp_ang_vel(filename)

char *filename;

PRS Source Code Reference Manual 3.53

Software Documentation

PLOT_HP_ANG_VEL_LABELS

DESCRIPTION:

This function will plot the labels for angular velocity graph. The data is kept in filename.

SYNTAX:

plot_hp_ang_vel_labels(filename)

char *filename;

PRS Source Code Reference Manual 3.54

Software Documentation

PLOT_HP_ANGLE

DESCRIPTION:

This function will plot the orientation of the PRS targets (data in filename) with respect to

time.

SYNTAX:

plot_hp_angle(filename)

char *filename;

PRS Source Code Reference Manual 3.55

Software Documentation

PLOT_HP_ANGLE_LABELS

DESCRIPTION:

This function will plot the labels for the orientation graph. The data is kept in filename.

SYNTAX:

plot_hp_angle_labels(filename)

char *filename;

PRS Source Code Reference Manual 3.56

Software Documentation

PLOT_HP_U

DESCRIPTION:

This function will plot the 'u' co-ordinates of the PRS target(s) (data in

filename) with respect to time.

SYNTAX:

plot_hp_u(filename)

char *filename;

PRS Source Code Reference Manual 3.57

Software Documentation

PLOT_HP_UV_LABELS

DESCRIPTION:

This function will plot the labels for the (u,v) graph. The data is kept in filename.

SYNTAX:

plot_hp_uv_labels(filename)

char *filename;

PRS Source Code Reference Manual 3.58

Software Documentation

PLOT_HP_V

DESCRIPTION:

This function will plot the 'v' co-ordinates of the PRS target(s) in filename with respect to

time.

SYNTAX:

plot_hp_v(filename)

char *filename;

PRS Source Code Reference Manual 3.59

Software Documentation

PLOT_HP_VEL_U

DESCRIPTION:

This function will plot the 'u' component of linear velocity of the PRS target(s) (Data in

filename) with respect to time.

SYNTAX:

plot_hp_vel_u(filename)

char *filename;

PRS Source Code Reference Manual 3.60

Software Documentation

PLOT_HP_VEL_UV_LABELS

DESCRIPTION:

This function will plot the labels for linear velocity graph. The data is kept in filename.

SYNTAX:

plot_hp_vel_uv_labels(filename)

char *filename;

PRS Source Code Reference Manual 3.61

Software Documentation

PLOT_HP_VEL_V

DESCRIPTION:

This function will plot the 'v' component of linear velocity of the PRS target(s) (Data in file-

name) with respect to time.

SYNTAX:

plot_hp_vel_v(filename)

char *filename;

PRS Source Code Reference Manual 3.62

Software Documentation

PLOT_HP_X

DESCRIPTION:

This function will plot the 'X' co-ordinates of the PRS target(s) in filename with respect to

time.

SYNTAX:

plot_hp_x(filename)

char *filename;

PRS Source Code Reference Manual 3.63

Software Documentation

PLOT_HP_XY_LABELS

DESCRIPTION:

This function will plot the labels for the (X,Y) graph. The data is in filename.

SYNTAX:

plot_hp_xy_labels(filename)

char *filename;

PRS Source Code Reference Manual 3.64

Software Documentation

PLOT_HP_Y

DESCRIPTION:

This function will plot the 'Y' co-ordinates of the PRS target(s) in filename with respect to

time.

SYNTAX:

plot_hp_y(filename)

char *filename;

PRS Source Code Reference Manual 3.65

Software Documentation

PRINT_COMMAND

 DESCRIPTION:

 This function will allow the user to print out data files.

 SYNTAX:

 print_command()

PRS Source Code Reference Manual 3.66

Software Documentation

 PRINT_MATRIX

 DESCRIPTION:

 This function will print out a matrix to a given file stream.

 SYNTAX:

 print_matrix(fp, matrix, row_dim, col_dim)

 FILE *fp;

 double *matrix;

 int row_dim;

 int col_dim;

PRS Source Code Reference Manual 3.67

Software Documentation

PRINT_MENU

DESCRIPTION:

 This function will set the menu structure for the menu and supporting text.

 SYNTAX:

 print_menu()

PRS Source Code Reference Manual 3.68

Software Documentation

 PRS

 DESCRIPTION:

 This is the main routine for PRS.

 SYNTAX:

 prs

 REVISION:

PRS Source Code Reference Manual 3.69

Software Documentation

PRS_MAIN_MENU

DESCRIPTION:

 This function will set up the main PRS command structure.

 SYNTAX:

 prs_main_menu()

PRS Source Code Reference Manual 3.70

Software Documentation

 READ_IMAGE_FROM_FILE

 DESCRIPTION:

 This function will read an image from a file. UNSUCCESSFUL (-1) will be returned if

unable to read entire file, else SUCCESSFUL (0) will be returned.

 SYNTAX:

 int read_image_from_file(file_name)

 char file_name;

PRS Source Code Reference Manual 3.71

Software Documentation

 READ_IMAGE_FROM_MVP

 DESCRIPTION:

 This function will read an image from the mvp board. UNSUCCESSFUL (-1) will be

returned if unable to read entire file, else SUCCESSFUL (0) will be returned.

 SYNTAX:

 int read_image_from_mvp()

PRS Source Code Reference Manual 3.72

Software Documentation

 READ_PIXEL_IN_BUFFER

 DESCRIPTION:

 This function will return the requested pixel from the HUGE array buffer given its x and y

locations.

 SYNTAX:

 int read_pixel_in_buffer(x, y)

 int x, y;

PRS Source Code Reference Manual 3.73

Software Documentation

 RECV_COM1

 DESCRIPTION:

 This function will receive a character from com port 1. The character will be returned

as an integer.

 SYNTAX:

 recv_com1()

PRS Source Code Reference Manual 3.74

Software Documentation

 RECV_COM2

 DESCRIPTION:

 This function will receive a character from com port 2. The character will be returned

as an integer.

 SYNTAX:

 recv_com2()

PRS Source Code Reference Manual 3.75

Software Documentation

 RECV_STRING1

 DESCRIPTION:

 This function will receive a character string from serial port 1.

 SYNTAX:

 recv_string1(in_string)

 char *in_string;

PRS Source Code Reference Manual 3.76

Software Documentation

 RECV_STRING2

 DESCRIPTION:

 This function will receive a character string from serial port 2.

 SYNTAX:

 recv_string2(in_string)

 char *in_string;

PRS Source Code Reference Manual 3.77

Software Documentation

 SEARCH_FOR_TARGET

 DESCRIPTION:

 This function will search for the robot in the current data in the buffer. Destination

should be set to TO_EGA or TO_MVP. If too many threshold pixels are found, the

threshold_value will be raised by THRESHOLD_ADJUST_VALUE. Also, if not enough pixels

are found, the threshold_value will be reduced by THRESHOLD_ADJUST_VALUE. If the

threshold value is raised, lowered or vice versa, the routine will exit UNSUCCESSFUL(ly).

Note: If the user hits a key, the search will be interrupted and the keyboard input will be re-

turned in the character array pointed to by the variable keyboard.

 SYNTAX:

 search_for_target(destination, original_threshold, keyboard)

 int destination;

 int original_threshold;

 char *keyboard;

PRS Source Code Reference Manual 3.78

Software Documentation

 SEND_COM1

 DESCRIPTION:

 This function will send a character to com (serial) port 1.

 SYNTAX:

 send_com1(send_char)

 char send_char;

PRS Source Code Reference Manual 3.79

Software Documentation

 SEND_COM2

 DESCRIPTION:

 This function will send a character to com (serial) port 2.

 SYNTAX:

 send_com2(send_char)

 char send_char;

PRS Source Code Reference Manual 3.80

Software Documentation

 SEND_STRING1

 DESCRIPTION:

 This function will send a character string to com port 1.

 SYNTAX:

 send_string1(command)

 char *command;

PRS Source Code Reference Manual 3.81

Software Documentation

 SEND_STRING2

 DESCRIPTION:

 This function will send a character string to com port 2.

 SYNTAX:

 send_string2(command)

 char *command;

PRS Source Code Reference Manual 3.82

Software Documentation

 SLOW_AT

 DESCRIPTION:

 This function will slow the PC's Limited 286 to 6 Mz. It is not required if Compaq's 386/20

is used.

 SYNTAX:

 slow_at()

PRS Source Code Reference Manual 3.83

Software Documentation

START_STOP_WATCH

DESCRIPTION:

This function will start the stop-watch time.

SYNTAX:

start_stop_watch()

PRS Source Code Reference Manual 3.84

Software Documentation

STAT_COM1

 DESCRIPTION:

 This function will return the status of com port 1 to the caller.

 SYNTAX:

 stat_com1()

PRS Source Code Reference Manual 3.85

Software Documentation

STAT_COM2

 DESCRIPTION:

 This function will return the status of com port 2 to the caller.

 SYNTAX:

 stat_com2()

PRS Source Code Reference Manual 3.86

Software Documentation

 SW_CAMERA

 DESCRIPTION:

 This function will switch the VCS Video Switcher to the chan_no camera.

 SYNTAX:

 sw_camera(chan_no)

 int chan_no;

PRS Source Code Reference Manual 3.87

Software Documentation

 TRACK

 DESCRIPTION:

 This function will track the PRS targets.

 SYNTAX:

 track()

PRS Source Code Reference Manual 3.88

Software Documentation

 TRACK_MAP

 DESCRIPTION:

 This function will draw a map of the camera floor layout which is a representation of the

non-overlapping FOV of all the cameras.

 SYNTAX:

 track_map()

PRS Source Code Reference Manual 3.89

Software Documentation

 TRACK_SNAP_SHOT

 DESCRIPTION:

 This function will read a rectangular image from the frame grabber board with the cen-

ter being x_target, y_target and the x and y offset from the center to the edges being

TRACK_X_OFFSET and TRACK_Y_OFFSET. The data is placed in the appropriate loca-

tions in the buffer. Note: No boundary checking is done. If the target is too close to the edge,

garbage data will be returned.

 SYNTAX:

 track_snap_shot(x_target, y_target)

 int x_target, y_target;

PRS Source Code Reference Manual 3.90

Software Documentation

 UTIL_MENU

 DESCRIPTION:

 This function will set the menu structure for the utility command window.

 SYNTAX:

 util_menu()

PRS Source Code Reference Manual 3.91

Software Documentation

 UTILITIES

 DESCRIPTION:

 This function will allow the user to modify the profile settings.

 SYNTAX:

 int utilities()

PRS Source Code Reference Manual 3.92

Software Documentation

VERIFY_TARGET

DESCRIPTION:

This function will verify that the targets which were found correspond to the desired tar-

get. If this the case, the PRS targets (LEDs) will be numbered in the following order:

TARGET

L1 L3

L2

If we are able to verify the target, we will return SUCCESSFUL (0).

SYNTAX:

int verify_target()

PRS Source Code Reference Manual 3.93

Software Documentation

XY_MATRIX

DESCRIPTION:

This function will set up the (X,Y) matrix.

SYNTAX:

xy_matrix(dx, dy, dm)

double dx, dy, *dm;

PRS Source Code Reference Manual 3.94

 SECTION C

LIBRARY REFERENCE MANUAL

Software Documentation

 LIBRARY REFERENCE MANUAL

ANY_KEY

 DESCRIPTION:

 This void function waits for a key to be pressed, then returns.

 SYNTAX:

 any_key();

Library Reference Manual 4.2

Software Documentation

 BEEP

 DESCRIPTION:

 This function will produce a beep.

 SYNTAX:

 beep();

Library Reference Manual 4.3

Software Documentation

 BOX_SCREEN

 DESCRIPTION:

 This function will place a box on the screen.

 SYNTAX:

 box_screen(row, column, height, width, attribute)

 int row, column, height, width, attribute;

Library Reference Manual 4.4

Software Documentation

 CHKKEY

 DESCRIPTION:

 This int function will return a 0 if a keystroke is ready and the key plus scan code will

be returned in the parameter list. If no keystroke is ready a non-zero result will be returned.

 SYNTAX:

 char scan_code[2];

 int chkkey(scan_code)

 EXAMPLE:

 char scan_code[2];

 int chkkey();

 if (chkkey(scan_code) == 0)

 printf("the following scancode was returned: %c, %c",

 scan_code, scan_code + 1);

Library Reference Manual 4.5

Software Documentation

 COMMAND_CLEAR

 DESCRIPTION:

 This void function will clear the commands from the screen. The command

structure must be set by using command_set.

 SYNTAX:

 void command_clear();

 EXAMPLE:

 command_clear();

Library Reference Manual 4.6

Software Documentation

 COMMAND_HANDLER

 DESCRIPTION:

 This void function will take a scancode and handle any command structure move-

ment and management necessary. The command structure must have been set up previ-

ously by command_set.

 SYNTAX:

 char scan_code[2];

 void command_handler(scan_code)

 EXAMPLE:

 char scan_code[2];

 inkey(scan_code);

 command_handler(scan_code);

Library Reference Manual 4.7

Software Documentation

 COMMAND_INIT

 DESCRIPTION:

 This void function will place the command structure on the screen. The command

structure must have been set up previously by command_set.

 SYNTAX:

 void command_init()

 EXAMPLE:

 command_init();

Library Reference Manual 4.8

Software Documentation

 COMMAND_PARAMETER_SET

 DESCRIPTION:

 This void function will set up the command parameter structure. This will set

the number of commands, highlighted attribute, normal attribute, current command, and

control direction.

 SYNTAX:

 int number, highlighted_attribute, normal_attribute;

 int current_command, control_direction;

 void command_parameter_set(number, highlighted_attribute,

 normal_attribute, current_command, control_direction)

 EXAMPLE:

 #include "include\command.ext"

 #define GRAY 0x07

 #define REVGRAY 0x70

 command_parmameter_set(5, GRAY, REVGRAY, 0,

RIGHT_LEFT_CONTROL);

Library Reference Manual 4.9

Software Documentation

 COMMAND_SET

 DESCRIPTION:

 This void function will set up the command structure for each command.

command_set will set the row, column, and string label for a given command of the structure.

 SYNTAX:

 int row, column;

 char label[];

 void command_set(row, column, label)

 EXAMPLE:

 int row = 5, column = 20;

 char label[6] = "Hello";

 command_set(row, column, label);

Library Reference Manual 4.10

Software Documentation

 FKEY_BLOCK

 DESCRIPTION:

 This void function places function key labels on the CRT.

 SYNTAX:

 void fkey_block(fkeys)

 char *fkeys[10];

 SEMANTICS:

 Function key numbers are placed on the screen in inverse video. All labels should be

initialized; even those which are to remain empty. The routine erases any characters which

were in the function key area before printing out the new keys.

 EXAMPLE:

 char *fkey_set_2[10];

 fkey_set_2[0] = "Key 1";

 fkey_set_2[1] = "KEY 2";

Library Reference Manual 4.11

Software Documentation

fkey_set_2[2] = "KEY 3";

 fkey_set_2[3] = "KEY 4";

 fkey_set_2[4] = "KEY 5";

 fkey_set_2[5] = "KEY 6";

 fkey_set_2[6] = "KEY 7";

 fkey_set_2[7] = "KEY 8";

 fkey_set_2[8] = "KEY 9";

 fkey_set_2[9] = "KEY 10";

 fkey_block(fkey_set_1);

Library Reference Manual 4.12

Software Documentation

 FKEY_CLEAR

 DESCRIPTION:

 This void function erases the function key labels.

 SYNTAX:

 void fkey_clear();

 EXAMPLE:

 fkey_clear();

Library Reference Manual 4.13

Software Documentation

 FLOOD_PARTIAL_SCREEN

 DESCRIPTION:

 This function will flood the partial screen with a given character and a given attribute.

 SYNTAX:

 int row, column, height, width, attribute;

 char flood_character;

 flood_partial_screen(row, column, height, width,

 flood_character, attribute)

Library Reference Manual 4.14

Software Documentation

 INKEY

 DESCRIPTION:

 This void function will wait for a key to be hit for on keyboard and will return the scancode

without echoing the character to the screen.

 SYNTAX:

 char scan_code[2];

 void inkey(scan_code)

 EXAMPLE:

 char scan_code[2];

 void inkey();

Library Reference Manual 4.15

Software Documentation

 INTEGER_BOUNDRY

 DESCRIPTION:

 This integer fuction will force an integer to be within a

 maximum and minimum boundary.

 SYNTAX:

 int integer_boundry(value, max_value, min_value)

 int value, max_value, min_value;

 SEMANTICS:

 The integer value is checked against the max_value and if it is greater than the func-

tion, returns max_value. If value is less than min_value than the function will return min_value.

Otherwise the function will return value.

Library Reference Manual 4.16

Software Documentation

 MENU_ALLOCATE

 DESCRIPTION:

 This void function will set up temporary character fields for the menu structure. This

must be called before the menu is used. Use menu_retrieve to transfer the information

from the temporary fields to the original data fields.

 SYNTAX:

 void menu_allocate();

 EXAMPLE:

 menu_allocate();

Library Reference Manual 4.17

Software Documentation

 MENU_ATTR

 DESCRIPTION:

 This void function places an attribute throughout all the fields of a menu.

 SYNTAX:

 menu_attr(attr)

 char attr;

 EXAMPLE:

 menu_attr(0x7);

Library Reference Manual 4.18

Software Documentation

 MENU_ATTR_FIELD

 DESCRIPTION:

 This void function will attribute an individual field.

 SYNTAX:

 int field, attr;

 void menu_attr_field(field, attr);

 EXAMPLE:

 #define GRAY 0x7

 menu_attr_field(0, GRAY);

Library Reference Manual 4.19

Software Documentation

 MENU_CHECK

 DESCRIPTION:

 This void function will check the field of a menu and return a 0 if all the fields

are valid, otherwise it returns a non-zero value and a bad field number.

 SYNTAX:

 int *invalid_field;

 void menu_check(invalid_field)

 EXAMPLE:

 menu_check(invalid_field);

Library Reference Manual 4.20

Software Documentation

 MENU_CLEAR_FIELD

 DESCRIPTION:

 This void function will clear a given field with NULLs.

 SYNTAX:

 int field;

 void menu_clear_field(field)

 EXAMPLE:

 menu_clear_field(0);

Library Reference Manual 4.21

Software Documentation

 MENU_CLR

 DESCRIPTION:

 This void function will clear all the fields in a menu structure.

 SYNTAX:

 char character;

 void menu_clr(character)

 EXAMPLE:

 char character = ' ';

 menu_clr(character);

Library Reference Manual 4.22

Software Documentation

MENU_CURSOR

 DESCRIPTION:

 This void function will update the cursor to the current menu field.

 SYNTAX:

 void menu_cursor();

 EXAMPLE:

 menu_cursor();

Library Reference Manual 4.23

Software Documentation

 MENU_FREE

 DESCRIPTION:

 This void function will deallocate the memory which was dynamically allocated for

the temporary character fields with the routine menu_allocate.

 SYNTAX:

 void menu_free();

 EXAMPLE:

 menu_free();

Library Reference Manual 4.24

Software Documentation

 MENU_HANDLER

 DESCRIPTION:

 This function will handle all menu input and display to the screen. The menu struc-

ture must be set up with menu_set. The routine menu_handler will return the following

codes. Return codes: MENU_NO_ERROR = (0) successful MENU_LIMIT_ERROR = (1) field

out of limit

 SYNTAX:

 char *c;

 void menu_handler(c)

 EXAMPLE:

 char c[2];

 inkey(c);

 menu_handler(c);

Library Reference Manual 4.25

Software Documentation

 MENU_INIT

 DESCRIPTION:

 This void function will initialize a menu structure to the screen.

 SYNTAX:

 void menu_init();

 EXAMPLE:

 menu_init();

 REVISION:

09-14-87 MWP Removed \0 from the sprintf statements.

 Remove the redundant memset calls.

 Create menu_set_field().

Library Reference Manual 4.26

Software Documentation

 MENU_INIT_FIELD

 DESCRIPTION:

 This void function will initialize a particular field.

 SYNTAX:

 int field;

 void menu_init_field(field)

 EXAMPLE:

 menu_init_field(0);

Library Reference Manual 4.27

Software Documentation

 MENU_INIT_FIELD_ATTR

 DESCRIPTION:

 This void function will initialize a field with a given attribute.

 SYNTAX:

 int field;

 char attr;

 void menu_init_field_attr(field, attr)

 EXAMPLE:

 #define GRAY 0x7

 menu_init_field_attr(0, GRAY);

Library Reference Manual 4.28

Software Documentation

 MENU_RETRIEVE

 DESCRIPTION:

 This void function will retrieve the menu structure data from the

temporary character strings to the appropriate data fields.

 SYNTAX:

 void menu_retrieve();

 EXAMPLE:

 menu_retrieve();

Library Reference Manual 4.29

Software Documentation

 MENU_SET

 DESCRIPTION:

 This void function will set the menu structure for a particular field.

 SYNTAX:

 int field_number;

 int column_start;

 int row_location;

 int field_length;

 char *home;

 int right;

 int left;

 int down;

 int up;

 int type;

 int num_dec;

 int check_limit;

 double lower;

 double upper;

Library Reference Manual 4.30

Software Documentation

int format;

 int check_format;

 double empty_value;

 int display;

 char *enumerated_data_fields;

 int num_of_enumerated_types;

 int length_of_enumerated_field;

menu_set(field_number, column_start, row_location,

 field_length, home, right, left, down, up, type,

 num_dec, check_limit, lower, upper, format,

 check_format, empty_value, display,

 enumerated_data_types,

 num_of_enumerated_types,

 length_of_enumerated_field)

 SEMANTICS:

 The following fields need further explanation. The values of the constants have been

defined in menu.h.

 int type; May assume the following values:

 STRING_TYPE 0 INT_TYPE 1 DOUBLE_TYPE 2

 FILE_NAME_TYPE 3 CAP_STRING_TYPE 4 ENUMERATED_TYPE 5

 LONG_TYPE 6

Library Reference Manual 4.31

Software Documentation

 int format; May assume the following values:

 NO_FORMAT 0 LEFT_FORMAT 1 RIGHT_FORMAT 2

 CENTER_FORMAT 3

 int check_format; May assume the following values:

 BLANK_OK 0 FILLED_IN 1

 int check_limit; May assume the following values:

 NO_LIMIT_CHECK 0 LIMIT_CHECK 1

 int display; May assume the following values:

 ALWAYS 0

 IF_NOT_EMPTY 1

Library Reference Manual 4.32

Software Documentation

 MENU_SET_FIELD

 DESCRIPTION:

 This void function will set the menu structure.

 SYNTAX:

 void menu_set_field();

 REVISION:

Library Reference Manual 4.33

Software Documentation

 MESSAGE

 DESCRIPTION:

 This function will print a message to the message line on the screen.

 SYNTAX:

 message(string)

 char *string;

Library Reference Manual 4.34

Software Documentation

 PRINT

 DESCRIPTION:

 This void function will print a given string to the current cursor location an the screen

with a given attribute.

 SYNTAX:

 print(string, attribute);

 char *string;

 int attribute;

 SEMANTICS:

 This function will write to the screen in one of three ways depending on the value of

screen.use_bios. The three methods are BIOS, DIRECT, and PGA_DISPLAY. These values

and the global variables necessary are in screen.ext. The values for the attribute can be found

in color.def.

 EXAMPLE:

 print("this is a test", BLUE);

Library Reference Manual 4.35

Software Documentation

 PRINT_CHARACTER

 DESCRIPTION:

 This function will set up a string of number of characters which will be printed with a given

attribute.

 SYNTAX:

 char c;

 int count, attribute;

 print_character(c, count, attribute)

Library Reference Manual 4.36

Software Documentation

 PRINT_NO_ATTR

 DESCRIPTION:

 This void function will print a given string to the current cursor location on the screen with

the current attribute.

 SYNTAX:

 print_no_attr(string)

 char *string;

 SEMANTICS:

 This function will write to the screen in one of three ways depending on the value of

screen.use_bios. The three methods are BIOS, DIRECT, and PGA_DISPLAY. These values

and the global variables necessary are in screen.ext.

 EXAMPLE:

 print_no_attr(" this is a test");

Library Reference Manual 4.37

Software Documentation

 QUERY_MESSAGE

 DESCRIPTION:

 This function will print a query message to the screen and the user will be given a chance

to input Y or N. If a Y is entered, the function will return (0); else (1) will be returned.

 SYNTAX:

 int query_message(string)

 char *string;

Library Reference Manual 4.38

Software Documentation

 QUIT

 DESCRIPTION:

 This function will clean up the screen before leaving a program.

 SYNTAX:

 quit(rc)

 int rc;

Library Reference Manual 4.39

Software Documentation

 REV

 DESCRIPTION:

 Converts a color to its reverse video value.

 SYNTAX:

 rev(color);

int color;

 SEMANTICS:

 Useful for specifying color to other library routines, such as menu_han.

EXAMPLE:

 highlight = rev(GRAY);

Library Reference Manual 4.40

Software Documentation

 SCR_CLR

 DESCRIPTION:

 This void function clears the screen.

 SYNTAX:

 scr_clr();

 SEMANTICS:

 This function requires some global variables which are in screen.ext.

 EXAMPLE:

 scr_clr();

Library Reference Manual 4.41

Software Documentation

SCR_CURSOFF

DESCRIPTION:

 This void function turns the cursor off.

SYNTAX:

 scr_cursoff();

SEMANTICS:

This function requires some global variables which are in screen.ext.

EXAMPLE:

 scr_cursoff();

Library Reference Manual 4.42

Software Documentation

 SCR_CURSON

DESCRIPTION:

 This void function turns the cursor on.

 SYNTAX:

 scr_cursoff();

SEMANTICS:

This function requires some global variables which are in screen.ext.

EXAMPLE:

 scr_curson();

Library Reference Manual 4.43

Software Documentation

SCR_PAGE

DESCRIPTION:

This void function will set the screen default page.

SYNTAX:

 scr_page(page)

 int page;

SEMANTICS:

This function requires some global variables which are in screen.ext.

EXAMPLE:

 scr_page(0);

Library Reference Manual 4.44

Software Documentation

 SCR_POS

DESCRIPTION:

This void function will return the current cursor location.

SYNTAX:

 scr_pos(old_row, old_column)

 int *old_row, *old_column;

SEMANTICS:

This function requires some global variables which are in screen.ext.

EXAMPLE:

 int old_row, old_column;

 scr_pos(&old_row, &old_column);

Library Reference Manual 4.45

Software Documentation

SCR_ROWCOL

DESCRIPTION:

This void function will set the current cursor location.

SYNTAX:

 scr_rowcol(row, column)

 int row, column;

 SEMANTICS:

This function requires some global variables which are in screen.ext.

EXAMPLE:

scr_pos(5, 10);

Library Reference Manual 4.46

Software Documentation

SCR_SETUP

DESCRIPTION:

This void function sets up the global screen parameters.

SYNTAX:

scr_setup();

SEMANTICS:

This routine must be called before any scr_ routines are used. Also, screen.h must be

included in the main which defines the necessary global variables.

EXAMPLE:

 scr_setup();

Library Reference Manual 4.47

Software Documentation

WRTATTR

DESCRIPTION:

This void function will write a given attibute to a string of characters on the screen lo-

cated at the current cursor position.

SYNTAX:

 wrtattr(attribute)

 int attribute;

SEMANTICS:

This function will write to the screen in one of three ways depending on the value of

screen.use_bios. The three methods are BIOS, DIRECT, and PGA_DISPLAY. These values

and the global variables necessary are in screen.ext. The values for the attribute can be found in

color.def.

EXAMPLE:

wrtattr(BLUE);

 Library Reference Manual 4.48

 Software Documentation

BIBLIOGRAPHY

[1] Position Reference System - A User's Manual.

Bibiliography 5.1

