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ABSTRACT

The determination of 3-D motion parameters of an object from its image-sequences is discussed for three
types of motion analysis: (1) monocular vision, (2) stereo vision, and (3) stereo motion. These parameters  enable
one to obtain  attitude, attitude rate, surface shape, identification/recognition, and track of the object. Under
suitable conditions, these parameters can be estimated from 2-D image coordinates of a set of points on the
object's surface in consecutive images, using the Image Point Correspondence (IPC) algorithm. In this paper, a
Generalized Image Point Correspondence  (GIPC) algorithm has been developed to enable the computation of
motion parameters for a general configuration where both the object and the camera are moving.  Furthermore,
this algorithm was successfully tested on both simulated and video-acquired data.          

1 INTRODUCTION

Research in motion-analysis has evolved over the years as a challenging field in the area of robotic vision.  Its
major contribution is in application to dynamic image-sequence analysis. The information contained in the im-
age-sequences of a moving object aids in the computation of the motion parameters as well as the segmen-
tation and shape analysis.

1.1 APPLICATIONS OF MOTION ANALYSIS
        
The potential applications of image-sequence analysis (Fig. 1) are listed below [1,2]:
        
(i)  Robotics/Automation 
(ii)  Medicine and Biological Sciences
(iii) Military Applications
(iv) Meteorological Applications
(v)  Traffic Monitoring
(vi)  Segmentation and Scene Analysis

Robotics and automation find applications in industry and space. In industry, a camera mounted on the end-
effector of a manipulator (robot arm) takes images of a moving object or target.  The range and the orientation
of the object relative to the end-effector are estimated from a knowledge of the displacements of the images
of its features.  This information, in turn, is used as a feedback to control the manipulator. For space applica-
tions, a robot's task can be, for example, to retrieve a defective satellite.  After knowing the position, orientation,
and the velocities in all six degrees of freedom of the satellite, the motion of the manipulator under computer
control in matched to that of the satellite.  It is done so that when the robot grasps the satellite, no excessive
forces and torques are produced, which might otherwise damage the satellite or the manipulator.  A future use
of the robot is in its application to an autonomous vehicle.  Such a robot-controlled vehicle could be extensively
used for lunar/space exploration, using vision for its navigation.  One of the functions of the vision system is to
prevent collision with obstacles, such as rocks, while moving and taking pictures of different types of terrains



in planetary exploration.

1.2  CURRENT RESEARCH THRUSTS IN MOTION ANALYSIS
        
The current research in motion analysis for perception is concentrated in the following areas (Fig. 1):

(i)   Feature extraction and matching of consecutive images.
(ii)  Efficient algorithms for motion parameter detection.
(iii) Hardware Implementations.
(iv) Applications developments.

Techniques are being developed that enable extraction and matching of features over consecutive frames.
Features can also be estimated from images for identification purposes.  Furthermore, several images can be
matched using a set of features corresponding to a particular object or scene.  Another approach to the iden-
tification of the object/target is the correlation of the acquired scenes with those stored in the computer.  Fea-
ture extraction and image matching provide the needed inputs to the algorithms for motion parameter
estimation.  These algorithms perform unique operations on image sequences. Considerable effort is presently
being expended in the area of parameter estimation for applications in relative motion between the camera and
the object/scene.  Applications of motion parameter estimation in various fields of engineering and science
continue to be explored at an accelerated pace.  The thrust of automation and robotics in industrial, space, and
defense operations has created a need for the motion parameter estimation algorithms.  Research efforts in
the areas of algorithm development and applications are determining requirements for hardware development.
Hardware subsystems are comprised of cameras, videos, pointing, tracking, and on-board data processing.
The technology innovations for space applications include reduction of size and weight, increase in speed and
reliability, and automatic operation.  For the medical and ground-based systems, technology is being devel-
oped for data processing/recording and display subsystems. In the past two decades, a number of approaches
have evolved in the development of efficient algorithms for motion perception from a sequence of images.
These approaches are discussed in the following subsection.

1.3   APPROACHES TO THE SOLUTION FOR THE MOTION ANALYSIS PROBLEM
         
In order to develop efficient algorithms, one can use either of the two broadly classified approaches [1]:

1.3.1 INTENSITY-BASED APPROACH

Here, image processing techniques like subtraction, correlation, convolution, Fourier analysis, or differentia-
tion, are applied to the object's image to estimate its motion parameters. The algorithms that fall in this category
are explained below [3]:

(i) Reflectance Map Method: The dependence of surface reflection on the geometry of incident and reflected
rays is given by the bidirectional reflectance distribution function. The reflectance that gives a relationship be-
tween the surface orientation and brightness can be derived from this function and the distribution of the light
sources.  The photometric stereo method for recovering the orientation of surface patches from a number of
images taken under different lighting conditions has been developed.  If a single image is available, the shape
can also be recovered from the spatial variation of brightness called shading, since parts of the surface are
oriented differently and are visible with different brightnesses.

(ii) Optical Flow Approach: Optical flow is a velocity field that defines motion in an image. A velocity vector is
assigned to each point in the image. Brightness patterns in the image move as the object moves.  It is the ap-
parent motion of these brightness patterns that gives the optical flow.  Movement through the environment
maps information onto a pattern.  From this pattern through inverse mapping, it is possible to derive information
about the environment and the observer's motion.  This approach requires iterative searches.  The orthograph-
ic (parallel) projection is also assumed.

1.3.2 FEATURE-BASED APPROACH

In this approach, prominent features are found and then matched over consecutive time-varying frames.  The
features can be points, line segments, edge fragments, or moment invariants.  The correspondence or the
matching problem over a set of frames is assumed to be known a priori.
          
The algorithms that fall in this category are explained below:
          



(i) Moment Invariant/Attributed Graph Approach: 3-D objects are recognized, and the motion parameters are
determined from their 2-D orthographic projections.  Geometric transforms are used instead of the iterative
matching techniques [4,5].  For identification purposes, a 3-D object is represented by an attributed graph
where a node represents a face of the object.  Associated with each node is a feature vector containing mo-
ment invariants of the face.  A link between two nodes means that the two faces are adjoining. Associated with
each edge is a scalar, which is the angle between two nodes.  Any 2-D projection of the object can be similarly
represented by a graph, which is a subgraph of the above graph. This is so because a part of the object is
facing the camera. Thus the identification problem becomes a subgraph isomorphism between the observed
image and the 3-D object.  The moment invariants are found to stay unchanged under 3-D motion.  Attitude
parameters of the observed object relative to the 3-D object are determined from the knowledge of 2-D mo-
ments of its faces.  Orthographic projection is assumed in this analysis. This approach considers the object
with flat surfaces only.
          
(ii) Straight Line Correspondence Algorithm: 3-D motion/structure of a rigid body, containing straight line seg-
ments as features, can be determined if a sequence of three 2-D perspective views is given [6].  The projec-
tions of 3-D lines over the three consecutive image frames are assumed to be known.  A seven line
correspondence (LC) involves an iterative search without any constraints on the 3-D line.  If the 3-D lines lie
on parallel planes, and the orientation of the rotation axis is fixed over the three image frames, an eight LC
results in a linear method.  The surface of a unit sphere is used in place of the plane of the perspective projec-
tion.  In this analysis, the projections of moving 3-D lines on this sphere over three frames are studied.  A fairly
accurate initial guess is required for convergence in the iterative search.
          
(iii) Image Point Correspondence Algorithm: Three different cases of motion analysis have been identified [7].
They are: (i) Two-view motion analysis (monocular vision), (ii) stereo vision, and (iii) stereo motion.  A discus-
sion of these cases appears in the following section where the approach used in the paper is described.

1.4  STATEMENT OF THE PROBLEM

In this paper, three cases of motion analysis based on vision, have been investigated. These cases are:

(1)  The Two-view Motion Analysis or Monocular Vision  Case (Fig. 2):  Pictures of a moving target are taken
by a stationary camera at different instants of time.  Using the IPC algorithm, the motion parameters of the
target are found from 2-D image coordinates of the target's features (e.g. surface points). The knowledge of
the correspondence of these 2-D coordinates over consecutive frames is required.  The surface of the target
is also determined.

(2)  The Stereo Vision or Binocular Vision Case (Fig. 3) :  Pictures of a stationary target are taken by two cam-
eras stationed at different locations.  The motion parameters that relate the two camera coordinate systems
are found by using the IPC algorithm.  The surface of the target can also be determined from a minimum of
eight available data points.

(3)  The Stereo Motion Case:  This case is similar to the second case.  However,  instead of two stationary
cameras, one moving camera is used to take the pictures  of the stationary target from two different locations
at different instants of time.

In all the cases mentioned, the image plane is assumed to be at the focal point of the camera with its X- and
Y-axes parallel to those of the camera coordinate system, where z-axis is the line of sight.

In this context, the previous work done in developing the IPC algorithm in three different ways has been studied
[7,8,9].  However, the IPC algorithm does not apply to the more general problem of motion analysis. The gen-
eralized version of motion analysis involves a situation where both the object and the camera are moving [10].
For example, industrial and space robots face this situation in locating and tracking of various objects/scenes.
The space robot takes pictures of a satellite for motion analysis.  Both the camera/video system and the object
move asynchronously.  An algorithm for motion parameter estimation is required for this general case of rela-
tive motion. In the GIPC algorithm, a generalization of the IPC algorithm, this problem of motion analysis is
discussed.  The three cases of motion analysis mentioned above are special cases of the present one.

2   THE GENERALIZED IMAGE POINT CORRESPONDENCE ALGORITHM

2.1 THE ALGORITHM

The general case of motion analysis is illustrated in Fig. 4.  For simplicity in presentation, we consider in detail
the equations that track a single point P on a moving object by a moving camera.  F i and Fj  are the two frames



with which the camera coordinate system coincides at two different instants of time τi and τj ( where τj > τi )
respectively. Point P moves from one position Pi to another position P j  due to rigid-body motion of the object.
We  assume (Ri, Ti) and (Rj, Tj) to be the transformation parameters (rotation and translation) that link the
frames Fi and Fj respectively with the standard frame S.  Also, let (Rij, Tij) be the transformation parameters
that link the frame F i  with the frame F j .  The object moves with the unknown motion parameters (R, T).

The desired relationship between the coordinates of the initial and the final positions of point P recorded by the
camera, with respect to the frames Fi  and Fj respectively, is given by the following equations (see Appendix):

pjj = R ij'  pii + Tij' (1a)

where

pi = ( xi, yi, zi )
T  is the vector of 3-D coordinates of P i  relative to S

pj = ( xj, yj, zj )
T  is the vector of 3-D coordinates of Pj  relative to S

pαβ = (xαβ, yαβ, zαβ)T  is the vector of 3-D coordinates of Pβ  relative to Fα at instant τβ  (α, β = i,j)

and

Rij'  =  R ij
T  Ri  R  R i

T  =  R j  R  Ri
T    and    Tij'  =  - Rj  R  Ri

T  Ti + Rj   T + Tj(1b,c)

Eq. (1a) gives the expression for the generalized version of the motion-analysis equation. Clearly, it does not matter
whether the object or the camera is moved first. For the rest of the discussion,  R and T are defined as:

       

 and 

       (1d,e)

where  rαβ (α, β = 1,2,3) are the rotational elements and tα (α = 1,2,3) the translations along   x-, y-, and z-axes
respectively.

Special Cases:  If Fi coincides with S, the motion equation can be written as

Rij' = R ij
T  R = Rj  R  and  Tij' = R

j
 T + Tj (2a,b)

     
The IPC algorithm can be used to estimate the motion parameters (Rij',Tij') and hence (R, T) of the moving
object, assuming R ij and Tij are known.

(i)  Monocular Vision:  Eq. (1a) reduces to the case of the two-view motion-equation when the location of the
camera, taking the pictures of the moving object, is fixed (Fig. 2).  In that case,

Ri = Rj = Rij  = I   and   Tij = Tj = O (3a)

Therefore, the generalized motion-equation reduces to

pjj = R pii + T (3b)

or to the more familiar two-view motion equation

p' = R p + T (3c)

as the frames Fi and Fj coincide with the frame S, such that pii = pi = p and pjj = pj = p'.

(ii)  Stereo Vision/Stereo Motion:  For a stereo vision/stereo motion case, the object is assumed to be stationary
(Fig. 3).  In that case,

R = I;  R ij = R j   and   T = O (4a)



and the generalized motion equation reduces to

p' = R j p + Tj (4b)

as should be the case.

In another special case of stereo vision, the object is moving and the cameras are rigidly fixed to each other in
a manner that their optical axes are parallel, as shown in Fig. 5.  In this case, F i coincides with  S so that

Rij = R j = I;  Tij = Tj = (-d, 0, 0)T (4c)

The three cases of motion analysis have been found to be equivalent [7]. The motion of point Pi to point Pj with
a fixed frame F j is similar to the motion of frame Fj  to frame Fi  with respect to a fixed point P.

2.2  DETERMINATION OF 3-D MOTION PARAMETERS

The motion parameters to be determined [7,8,9,10,11] are:

2.2.1  OBJECT SURFACE SHAPE

The shape of the object surface is found by a map of relative depths of 3-D object surface points by the method
discussed as follows:

From the generalized motion equation for any two consecutive frames F i and F i+l , one finds that:

(5a)

where rα (α = 1,2,3) is the αth row of the rotation matrix Ri,i+1 ' and vi = pi / zi .  Therefore, the 'z'  coordinates
(depth  or range) of the features, from their 2-D image points, can be found from the following equation:

zλ,i   = 
 
                                                 =   λ zi 

(5b)

Therefore,

xλ,i  = zλ ,i X i = λ xi     and     yλ,i = zλ,i  Yi = λ yi (5c)

Eqs. (5b, 5c) give the object surface shape at instant τi  with respect to the frame Fi .  The shape of the object
surface is the set of 3-D coordinates of surface points relative to a frame.  Therefore, the shape of an object
can be determined before it moves. However, its size cannot be determined due to the scale factor λ involved.
In order to determine the shape of the object surface after the object has moved with respect to the frame F i+1,
one has to compute 'Xi+l' and 'Y i+l' from

xλ,i+1 = zλ,i+1 Xi+1      and     yλ,i+1 = zλ ,i+1 Yi+1 (5d)

For finding the shape of an object surface one needs to know the correct solution for the rotation matrix R.  If
the sign of the coordinates 'z' and 'z' ' of  any point is the same, the corresponding rotation matrix R is consid-
ered.  When the signs are opposite, the other rotation matrix R' is considered as the final result [8,9].

2.2.2  RANGE AND INTERFRAME RANGE RATE

The range  of available features, which determines the depth of object surface up to the scale factor λ at instant
τi, is defined as:

(6a)

since the object is conventionally viewed along the z-axis of the camera coordinate system.  The interframe
range rate  ( up to the scale factor λ ) between any two consecutive frames Fi and Fi+l 



at instants τi and τi+1, is given by:

(6b)

2.2.3  INTERFRAME ATTITUDE AND ATTITUDE RATES

The rotation matrix R can be estimated between the two consecutive frames Fi and Fi+1 from the following
equations:

R  =  Ri
T   Ri,i+1  Ri,i+1'  Ri  =  Ri+1

T  Ri,i+1 '  Ri (7a)

assuming the relative transformation parameters between these frames are known. Once the rotation matrix
R is estimated, the attitude parameters of the object are computed [7,8,9].  Two different representations of R
have been used [8,10,11].  
     
The interframe attitude rates  between the two frames are given as:  

angular velocity of rotation , ωθ = (θi+1 - θi)/∆τ (7b)

if the first representation of R is used [8,10].  If the second representation of R is used [10,11], then

roll rate  , ωθ = (θi+1 - θi)/∆τ (7c)

yaw rate , ωφ = (φi+1 - φi)/∆τ                                                                            (7d)

pitch rate , ωψ = (ψi+1 - ψi)/∆τ (7e)

2.2.4  OBJECT TRACKING AND RECOGNITION

The process of tracking can be divided into three tasks: object/target acquisition, attitude determination, and pre-
diction [2].  In the acquisition task, the object is located in the scene and its attitude and attitude rate parameters
are determined  to aid in the process of recognition at a later time. This task is divided into three major portions:
feature tracking, the stereo solution, and matching to the object model. Features are detected and tracked over
several frames, corresponding to different instants of time. These features are matched between consecutive
frames, and the motion parameters are estimated by the stereo solution using the GIPC algorithm.  These mo-
tion parameters are used in the prediction stage.  In this stage, the attitude and attitude rates are predicted so
as to get an idea about the future locations of the object.  This allows one to track the object successfully in
near real-time, limited by processing time of the computer used for the analysis.

The process of recognition is carried out after the object surface is reconstructed, and hence identified, from a
knowledge of 3-D object space coordinates of the features that reside on the surface of the object.  Since we
find 3-D coordinates up to the scale factor λ, the object can be matched and recognized with a reference object
in the main computer memory.

3  EXPERIMENTAL RESULTS

In this section, we present experimental results for the IPC and the GIPC algorithm tested successfully on real
data. Separate experiments, corresponding to 2-D images of the two positions of an octbox  (Fig. 6(a)), were
conducted.  The octbox has two parallel octagonal faces opposite to each other and eight rectangular faces.
In the first experiment (Fig. 6(b)), the octbox was rotated around the x-axis by 15o. In the second experiment
(Fig. 6(c)), the octbox was rotated around the x-axis by 105o.  In both experiment, rotation around the x-axis
means that the angle of rotation, by definition, is roll. Therefore, direction cosines of the arbitrary axis, around
which the octbox rotates, are given by υ1  = 1.0;  υ2  = 0.0; υ3  =  0.0. The translation along the three axes is
1 unit each.  Data for these two cases of octbox rotations are shown in Fig. 7(a) and Fig. 7(b) respectively,
where 3-D coordinates of the vertices of the octbox before the motion and their 2-D coordinates after the mo-
tion are given.

The GIPC algorithm has been applied to the first and second experiments, and results are shown in Figs. 8(a)
and 8(b). In both the experiments, the camera was rotated through 10o around its x-axis.  With the same set
of data for these experiments with the octbox rotation (Figs. 6(b), 6(c)), the directional cosines are found to be



same. The angles of rotation are -5o and 95o respectively, which means that the angles of rotation of the oct-
box are subtracted by the amount of rotation of the camera, and that indeed should be the case. These two
experiments show the success of GIPC algorithm with real data.

4  CONCLUSIONS

In this paper, an extension to the IPC algorithm called the Generalized Image Point Correspondence (GIPC)
was developed. A generalized expression for the motion analysis equation was derived, and three cases of
motion analysis were found to be the special cases of this case. Experimental verification for this development
was also provided.
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APPENDIX

To carry out a detailed analysis of the problem sketched in Fig. 4, one needs to establish the relationship be-
tween the three sets of frames in terms of the coordinates of point P. For this purpose, the problem is split into
two steps - one corresponding to the initial position Pi and the other to the final position Pj. These two steps
are considered separately.

A.1.1  INITIAL POSITION OF THE OBJECT

The transformation from the frame Fi  to the frame Fj   [7] is:

Φi pii = Φi Rij pji + Tij (A.1)

where Φi  is the matrix of the basis vectors of F i .

The transformation from F i to the standard frame S, and Fj to S are special cases of transformation of Eq. (A.1)
and are expressed respectively as:

pii = R i pi + Tiand pji = R j pi + Tj (A.2a,b)

A.1.2  FINAL POSITION OF THE OBJECT

The  motion of the object relates pi and pj as follows:

pj = R pi + T (A.3a)

As in Eq. (A.1), the transformation from Fi  to Fj   is expressed as:

Φi pij = Φi Rij pjj + Tij (A.3b)

The transformation from F i to S, and Fj to S, are special cases of Eq. (A.3b) and are expressed as:

pij = R i pj + Ti       and       pjj = Rj pj + Tj (A.3c,d)

This results in two sets of Eqs. (A.1) and (A.3a, A.3b), corresponding to two positions of the object. From either
sets of equations, we find the relationship between ( R i j, Tij ), ( R i, Ti ) and    (Rj, Tj ) as:

Rij = R i Rj
Tand Tij = Φ i ( Ti - Ri Rj

T Tj ) (A.3e,f)

The pictures of the moving object are taken by a moving camera at discrete instants of time. From this general
motion problem, we have two different cases. In the first case, the initial picture of the moving object is taken
by the camera at some location. Then the camera is moved to another location so that the object is in the field
of view when the second picture is taken. In the second case, the camera can be moved first to another  loca-
tion in order to take the second picture of the object. These two cases are found to be identical in terms of the
motion equation.

A.2.1  FIRST CASE

The motion of the object preceding the motion of the camera is assumed in this case. The relationship between
the initial and final positions of the point P is expressed by the following set of motion equations:

pj = R pi + T (A.4a)

for the motion of the object, and



Φi pij = Φi Rij pjj + Tij (A.4b)

for the motion of the camera from Eq. (A.3b). For transformation of Fi  to S, let Fj coincide with S. In that case,

Rij = R i ; Tij = Ti ; pji = pi; and       Rj = I = Φj
T

Substituting the above in Eq. (A.1) gives Eq. (A.2a). Similarly, let Fi  be S, where

Rij = R j
T  ;Tij = - R j

T Tj ; pjj = pi; and Φi
T = I = R i

Substituting the above in Eq. (A.1) results in Eq. (A.2b). Eliminating pi from Eq. (A.2a) and Eq. (A.2b), we have

Φi pii = Φi Ri Rj
T pji + Φi ( Ti - Ri Rj

T Tj ) (A.4c)

Comparison of Eq. (A.4c) with Eq. (A.1) gives Eqs. (A.3e,A.3f). 

The derivation of Eq. (1a) is as follows:

2-D image coordinates of pij and pji are not observed on the image image plane, because of the manner in
which the pictures are taken. So, eliminating pij  from Eqs. (A.3b,A.3c) yields

Φi ( Ri pj + Ti ) =  Φi Rij pjj + Tij (A.5a)

Elimination of pj from Eqs. (A.3a,A.5a) gives

Φi ( Ri R pi + Ri T + Ti ) = Φi Rij pjj + Tij (A.5b)

Furthermore, elimination of pi from Eqs. (A.2a,A.5b) yields the desired relationship between pjj and pii as
shown in Eq. (1a).

A.2.2  SECOND CASE

In this case, the motion of the camera preceding that of the object is assumed. The analysis follows:

The camera moves first in this case, so that

Φi pii = Φi Rij pji + Tij (A.6a)

Then the object moves, so that

pj = R pi + T (A.6b)

From Eqs. (A.6a,A.6b,A.2b,A.2c, and A.3d), the relationship between pj j and pii can be found to be the one
expressed in Eqs. (1a,1b,1c).



Fig. 1.   Current research thrusts in motion analysis.



Fig. 2.   Two-view motion analysis case.



Fig. 3.    Stereo vision case.



Fig. 4.  Geometry illustrating GIPC Algorithm.



Fig. 5. Special case of stereo vision where the optical axes of 
two cameras are parallel.



Fig. 6.  Experiments with real-data.

 (a) Octbox in its initial position; (b) first case of motion where Octbox is rotated 
through 15o around x-axis; and (c) second case of motion whereOctbox is rotated 
through 105o around  x-axis.



  x  y   z        X'         Y'

   0 -1 -1   3.414214  7.595754
-1.5 -1 -0.5 -3.058409  10.654163
-2  1   1 -0.585786 -0.131652
-1.5  1 -0.5 -0.238625  0.584223
-1.5  1   2.5 -0.379110 -1.268983

   0  1 -1   0.449490  0.767327
 1.5  1 -0.5   1.193126  0.584223
   2  1   1   1.757359 -0.131652

    (a)

   x  y   z        X'         Y'

   0 -1 -1 -4.44949 -1.303225
-1.5 -1 -0.5 -1.936348  0.633123
-2  1   1 -0.449490  0.767327
-1.5  1 -0.5 -0.644449  2.700675
-1.5  1   2.5 -0.136105  0.359012

   0  1 -1   3.414214  7.595754
 1.5  1 -0.5   3.222247  2.700675
   2  1   1   1.348469  0.767327

        (b)

Fig. 7.  Real-data for motion of Octbox .

(a) Data for the first case of motion, and
(b) data for the second case of motion.



Estimated  Translational Vector ( up to a scale factor) is:
T = [ 3.863706, 3.863707, 3.863717 ]T

Two possible solutions of Rotation Matrix are:

The directional cosines of the axis and the angle of rotation about the
axis (corresponding to R and R') are respectively:

ν1  = 0.576984;  ν2  = 0.688845;  ν3  = 0.438843; θ  = 182.886128
ν1' = 1.000000;  ν2' = 0.000006;  ν3' = 0.000001; θ' = 354.999983

Conclusion: Choose R' and its associated parameters as the final solution.
(a)

Estimated  Translational Vector ( up to a scale factor) is:
T = [ 1.035277, 1.035273, 1.035283 ]T

Two possible solutions of Rotation Matrix are:

The directional cosines of the axis and the angle of rotation about the
axis (corresponding to R and R') are respectively:

ν1  = 1.000000;  ν2  = 0.000000;  ν3  = 0.000002;   θ  = 95.000000
ν1' = 0.431055;  ν2' = 0.860937;  ν3' = -0.195299; θ' =  230.385837

Conclusion: Choose R and its associated parameters as the final solution.
(b)

Fig. 8. Demonstration of GIPC algorithm using real-data.

(a) For the first case of Octbox rotation, and 
(b) for the second case of Octbox rotation.
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